應用概率統(tǒng)計 課后答案
《應用概率統(tǒng)計 課后答案》由會員分享,可在線閱讀,更多相關《應用概率統(tǒng)計 課后答案(47頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 課后答案網(wǎng),用心為你服務! 大學答案 --- 中學答案 --- 考研答案 --- 考試答案 最全最多的課后習題參考答案,盡在課后答案網(wǎng)()! Khdaw團隊一直秉承用心為大家服務的宗旨,以關注學生的學習生活為出發(fā)點, 旨在為廣大學生朋友的自主學習提供一個分享和交流的平臺。 愛校園() 課后答案網(wǎng)() 淘答案() !" #%$%&%(%)%*%+-,-.0/
2、 {1{ #%1%&%(%2%3%+-,04-5 61. 798:<;=>p?A@BC;GFDDEEH@I pk = P ( = k) = qk 1p; k = 1; 2; ::: FKJq= 1 p. 2.6 7(1), L = 2 M;ONP( = 2) = pq + qp = 2pq, PRQSfUWVTXYOZ[UWXgAG\]VY^a` L = 3 M;GNP( = 2) = p2q + q2p PRQSfUWVTVXYGZbUWXgA\
3、7]XV^Y cd;Le = k M; P ( = k) = pk 1q + qk 1p = pq(pk 2 + qk 2; k = 2; 3; 4; ::: (2), L = k M;GfKgihkjkl(FV\m]p)@;Gnk 1 jJiNr 1 jklVm ;Gr PFopm ^ 11pr 1(1 p)k 1 (r 1) = Ckr 11pr qk r ; pk = P ( = k) = pCkr k = r + 1; r + 2; :::; FK
4、Jq= 1 p. 3.6 7(1), L 1 = k M;GfKgiskA5tu?vwkx;GFA4@ouy k +z1; :::; 10, r C 4 P ( 1 = k) = 10 k ; k = 1; 2; :::; 6: C 5 10 L 3 = k M;OfKgiskA5tu?Nvu{y 1; z2;:::; k 1 ;OF2ouyk +z1;
5、:::; 10, r C 2 1 C 2 k P ( 3 = k) = k 10 ; k = 3; 4; :::; 8: C 5 10 5 (2), |M}~10`Gu????@f1=S1gT= f5 jt?KJic??j?N1g ;Gr 1 5 P ( 1 = 1) = C5i 95 i : X 105 i=1 ?STf 1 = 10g = f5 jt????10gt;G
6、|? 1 P ( 1 = 10) = 105 : {1{ L k = 2; :::; 9 M;??i? ? f 1 = kg = f 1 kg f 1 k 1g; 1 5 P ( 1k) = X C5iki(10 k)
7、5 i ; 10 i=1
8、 1 5 P ( 1k 1) = X C5i(k 1)i [10 (k 1)])5 i : 10
9、 i=1 ?q? P ( 1 = k) = 1 5 k)5 i (k 1)i (11 k)5 i]: C5i[ki (10 X
10、 10 i=1 4.6 7 2 f2; 3; :::; 12g, FDE?@
11、 2 3 4 5 6 7 8 9 10 11 12 P ( = k) 1 2 3 4 5 6 5 4 3 2 1
12、 36 36 36 36 36 36 36 36 36 36 36 5.6 7??Bn(m) @N j?N@j??M????;G? m j??M??n;Am m
13、 n P ( = n) = X P (Bn(m)jAm )P (Am ) m=1
14、 n 11pmqn m 1(1 1 = m=1 Cnm w )m X
15、 n 11pk+1qn k 1 1 = k=0 Cnm 1 (1 w )k+1 X 1
16、 p = p p(1 )[1 )]n 1 w w
17、 p p p = p 1 (1 )n 1 + (1 )n 1 (1 )n ; w w w FKJk= m 1; p = 1 p.
18、 67??@K?iA???;G?2jf1;?2; :::g. ? B @K?i??kj;Gnk 1 j??Ji;Ghkj . ? ?Ji;C ?i??kj;ink 1 jK;???Ji;ihkjK?i??JJ`iAk@Kh?k j??Ji;MBk @ihk j??J`?M
19、 1Ak f = kg = B + C = A1B1 A2B2 :::Ak 1Bk + A1 B1A2 B2:::Ak 1 Bk 1Ak Bk : {2{ ?i pk = P ( = k) = P (B) + P (C ) = (0:6 0:4)k 10:4 + (0:6 0:4)k 10:6 0:6 = (0:24)k 10:76 = qk 1p; k = 1; 2; ::: Q <=>p?0:76@ ABC7D
20、E ? @A??;Gj?2?f0; 1; 2; :::g. STf = 0g @Kh?cj?Ji;Gr p0 = P ( = 0) = 0:4: k 1 M; ; f = kg = A1 B1A2 B2 :::Ak 1 Bk 1Ak Bk + A1 B1 A2B2 :::Ak Bk Ak+1 ?qN pk = P ( = k) = (0:6 0:4)k 1 0:6 0:6 + (0:6 0:4)k
21、 0:4 = (0:24)k 10:456; k = 1; 2; ::: ??; ADqEBCDE` 7. 7(1) g (x) = 1 x+h F (t)dt ?I 1 0 0 h Rx ) = 0, 3 0 ; (x 0)(x)(). , ;2; (+1) = 1; ( 10 , L x >
22、y M;= x y (> 0), ? Z F (t)dt# (x)(y) = h "Zx F (t)dt y 1 x+h y+h Zy F (t)dt# : = h "Zy+ F (t)dt 1 y+ +h
23、 y+h < h, ? "Zx Zy F (t)dt# (x)(y) = h F (t)dt 1 x+h y+h = "Zy+ F (t)dt Zy F (t)dt Zy+ F (t)dt#
24、 h 1 y+ +h y+ y+h = "Zy+h F (t)dt Zy F (t)dt# h 1 y+h+ y+ = F (y + h + 1 ) F
25、 (y + 2 ) 0; ( ?iy?+ h + 1 > y + 2 ) FKJ0< 1; 2 < 1, wcuJi`D {3{ 0 < h ;G?(x)?(y) = F (y + + 1h) F (y + 2h) 0 ` L h < 0 MgiQ8h;; (x) 7 20 , ?DJi(x)= F (x + h), FKJ0< < 1 ;GK? 8 lim F (x) = 1 ; x!+1 < x lim F (x) = 0 : ! Q
26、 8 lim (x) = 1 < x!+1 (x) = 0 : 3 , (x) = F (x + h), F : lim x! 0 ? ?i?(x) ;G? lim (y) = lim F (y + h) = F (x + h) = (x); y!x y!x Q` 8. 7(1) ?i? N Z +1 1 dF (y) = 1 F (y)j+1 + Z +1 1 F
27、 (y)dy = xyyxxy2 x!+1 x Z +1 1 x!+1 F (x) xy dF (y) = x lim lim x = lim [ F (x)] + x!+1 x F (x) + Z + y2 F (y)dy; x 1 1 1 + 1 y2 F (y)dy + Zx 1
28、 R +1 1 F (y)dy x + 2 x 1 lim y ! 1 x 1 F (x) 2 =1 + lim x = 1 + 1 = 0: 1 x!+1 x2 (2) gi(1) ?;
29、Gr` (3) L x > 0 M; Rx+1 y1 dF (y) < +1, ??7Rx+1 y1 dF (y) = +1, ?K?i? Z + 1 y dF (y) < Z + 1 y2 F (y)dy; x x 1 1 R + 1 1 F (y)dy = +1, ?qN x y2 + 1 +
30、1 1 x 1 F (y)dy lim x dF (y) = lim [ F (x)] + lim y2 R 1 x ! 0+ Z x y x ! 0+ x ! 0+ x 1
31、 F (x) 2 = lim [ F (x)] + lim x 1 x!0 + x!0 +
32、 x2 = lim [ F (x)] + lim F (x) = 0: x!0+ x!0+ {4{ 610. 7??( ; ) q A Jic;G?( ; ) A p.d.f. @ f (x; y) = ( 1 ; (x; y) A = ( 1 ; 0 < y < 2x
33、 x2; 0 x 2 0; F2 0; F (A) (A) FKJ(A) = R 02(2x x2 )dx = (x2 1 x3 )j02 = 4 . ?|? A?p.?d.f. 3 3 Z ( 0; F 1 f (x; y)dy = 3 (2x
34、 x2); 0x2 f (x) = 4 6– IGL0 x2 M; ADE—?@ 3 x 1 Z0 F (x) = P ( < x) = (2t t2)dt = (3x2x3);
35、 4 4 Q F (x) = f (x) = 8 4 (3x2 x3); 0 < x2 ; > 0; x 0 1 < 1; x > 2 >
36、 (2x x ); 0 x 2 : = Z 1 f (x; y)dy = 4 : dx ( 0; 2 F dF (x) 3 611. 7??ABC A“h@;G”@‘AB `
37、?L 0 < x < h M; ADE—?@ 1 1 2 F (x) = P ( < x) = 2 ABh 2 AB(h x) ; 1 2 ABh ’? A @;?B@VcK?i?;Gfifly= x ABC A?0;B@0 ;G|? A0B==AB = h x ; A0B0 = AB h x ; h
38、 h (h x)2 F (x) = 1 : h2 Q 613. 8 > 0; < F (x) = 1 > : 1; (h x)2 x0 ; 0 < xh : h2 x > h 75,P ( k) = P (1
39、k) = P ( 1 k) = 1 P ( < 1 k) = 0:25, ?| P ( < 1 k) = 0: r 1 k = 0; 29; k = 0:71. {5{ 15. 7? P( ). ?K?\i?]? 1 X pk = P ( = k) = P ( = kj = j)P ( = j): j=k ?i‰? j = j B(j; p), r P ( = kj = j) = Cjk pk (1 p)j k ;G 1 k k j k j pk
40、 = X Cj p (1 p) r j=k j! 1 j! k j k j = X p (1 p) r j=k k!(j k)! j!
41、 = k pk e 1 j k(1 p)j k X k! j=k (j k)! k pk = e k! ( p)k = e k! Q P( p) 19.6 7??F(x) Alim F (x) = A = 1, x!1 e (1 p) p; k = 0;
42、 1; 2; ::: Q A = 1, f (x) = F 0(x) = ( 0;F 2x; 0 < x < 1 620. 7(1), Z x F (x) = P ( < x) = f (t)dt 8 2 x2 8 2 x2 ; 0 < x1 ; 0 < x1 > 0; x 0 > 0; x 0 1
43、 1 = 1 1 2 3 = 1 2 > + 2x x ; 1 < x2 > 2x x 1; 1 < x2 2 2 2 2 > > < 1; x > 2 < 1; x
44、 > 2 > > > > > > : : (2) P ( < 0:5) = F (0:5) = 1 0:52 = 0:125.
45、 2 P ( > 1:3) = 1 F (1:3) = 1 2 1:3 + 1 (1:3)2 + 1 = 0:245; 2 P (0:2 < < 1:2) = F (1:2) F (0:2) = 2 1:2 1 (1:2)21 1 (0:2)2 = 0:66: 2 2 {6{ 21.6
46、 7(1) 1 1 1 F1 (y) = P ( 1 < y) = P < y = P > = 1 F y y dF1 (y) 1 1
47、 0 1 1 f1(y) = = f = f dy y y y2 y 1 2 ; 0 < 1 < 1 = ( 2 ; 0 < y < 1 = 3 y2 (
48、0; F 0; F y y y (2) ( ( 2 j j P ( y < < y); y > 0 F (y) F ( y); y > 0 F (y) = P ( < y) = 0;
49、 y0 = 0; y0 2 dy ( f (y) + f ( y); y > 0 ( f (y); y > 0 f (y) = dF1 (y) = 0; y0 = 0; y0 = 8 2y; 0 < y < 1 = ( 0;F
50、 > 0;y0 2y; 0 < y < 1 < 0; y1 > (3) :
51、 F3(y) = P e < y = P (< ln y) = P ( > ln y) = 1 F ( ln y): f3(y) = dF1 (y) = 1 f (
52、 ln y) dy y ( 2 ln y ; 0F = ( 2 ln y = 0; y 0; y < ln y < 1 22.6 7(1) A??DE?@ ; e 1 < y < 1 F n X pn = P ( = n) = pnm m=0 ne n n = Cnmpm (1 p)n m = e ;
53、n = 0; 1; 2; ::: X n! m=0 n! Q P( ). (2) A??DE?@ 1 X pm = P ( = n) = pnm n=m {7{ Q P( p). 23.6 7(1) f (x) = f (y) = pm me 1 [ (1 p)]n m = X m! n=m (n m)! pm
54、 me e (1 p) = ( p)m = e p; m = 0; 1; 2; ::: m! m! + f (x; y)dy = ( +1 x 1 = ( x 0; xe (1+y) 2 dy; x 0 0; ; x 0 Z 1 0 x > 0 xe x > 0; + ( R +1 x
55、 1 = ( 1 f (x; y)dx = xe (1+y) 2 dx; y 0 0; 2 y 0 0; Z 1 R 0 y > 0 (1+y) ; y > 0; ?@ f (x; y) = f (x)f (y), 7
56、 (2) f (x) = +1 f (x; y)dy = x1 8xydy; 0x < 1 = ( 4(x x3 ); 0x < 1 Z ( 0; F 0; F R f
57、(y) = +1 f (x; y)dx = 0y 8xydx; 0y < 1 = ( 4y3; 0y < 1 Z ( 0; F 0; F R ?@ f (x; y) 6= f (x)f (y), 7 (3) f (x; y)dy = (
58、 f (x) = 0; k1 ) k2 ) x0 Z + 1 R +1 1 x k1 1 (y x) k2 1 e y dy; x > 0 x +1 1 1
59、 ( xk1 1tk2 1e x e tdt; x > 0 = ( xk1 1e x; x > 0 = k1 ) k2 ) 0; k1 ) 0; x 0 x 0 R 0
60、 Q 624. 7(1) f (x) f (y) k1 ; 1), k2 ; 1), ?@ f (x; y) =6 f (x)f (y), 7 ( 0; F ( 0; 2x F = +1 f (x; y)dy = R 2 x2 + xy dy; 0x1 = 2x2 + ; 0x1 0 3 3 Z ( 0; F ( 0; F = +1
61、f (x; y)dx = R 1 x2 + xy dx; 0y2 = 1 0y2 0 3 6 (2 + y); Z (2) L 0 y 2 M; f (x; y) f j (xjy) = f (y) {8{ (3) (4) FKJ 8 x2+ xy
62、 ( 6x2 +2xy 3 0; F 0; F < 2+y ; 0x1 = 61 (2+y) ; 0x1
63、 = : P ( + > 1) = P (( ; ) 2 D) = Z ZD f (x; y)dxdy 1 2 xy
64、 = Z0 dx Z1 x x2 + dy 3 1 x2(1 + x) + x [4 (1 x)2 ] dx = Z0 6 1 5 4 1
65、 65 = Z0 x3 + x2 + x dx = 6 3 2 72 1 1 = P< 1 ; < 1 ; P< < 2 2
66、 2 j 2 P< 1 2 1 1 2
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點美食推薦
- XX國有企業(yè)黨委書記個人述責述廉報告及2025年重點工作計劃
- 世界濕地日濕地的含義及價值
- 20XX年春節(jié)節(jié)后復工安全生產(chǎn)培訓人到場心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點節(jié)后常見的八大危險
- 廈門城市旅游介紹廈門景點介紹廈門美食展示
- 節(jié)后開工第一課復工復產(chǎn)十注意節(jié)后復工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓
- 深圳城市旅游介紹景點推薦美食探索
- 節(jié)后復工安全生產(chǎn)培訓勿忘安全本心人人講安全個個會應急
- 預防性維修管理
- 常見閥門類型及特點
- 設備預防性維修
- 2.乳化液泵工理論考試試題含答案