《內(nèi)蒙古赤峰市高考數(shù)學(xué)二輪復(fù)習(xí):12 圓錐曲線的綜合問題》由會員分享,可在線閱讀,更多相關(guān)《內(nèi)蒙古赤峰市高考數(shù)學(xué)二輪復(fù)習(xí):12 圓錐曲線的綜合問題(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、內(nèi)蒙古赤峰市高考數(shù)學(xué)二輪復(fù)習(xí):12 圓錐曲線的綜合問題
姓名:________ 班級:________ 成績:________
一、 解答題 (共15題;共145分)
1. (10分) (2019湖北模擬) 已知橢圓 的左、右焦點為 ,離心率為 ,點 在橢圓 上,且 的面積的最大值為 .
(1) 求橢圓 的方程;
(2) 已知直線 與橢圓 交于不同的兩點 ,若在 軸上存在點 ,使得 ,求實數(shù) 的取值范圍.
2. (10分) (2018高二上南寧月考) 如圖,在平面直角坐標系 中,橢圓 的焦距為 ,
2、且過點 .
(1) 求橢圓 的方程;
(2) 若點 分別是橢圓 的左右頂點,直線 經(jīng)過點 且垂直于 軸,點 是橢圓上異于 的任意一點,直線 交 于點 .
①設(shè)直線 的斜率為 ,直線 的斜率為 ,求證: 為定值;
②設(shè)過點 垂直于 的直線為 ,求證:直線 過定點,并求出定點的坐標.
3. (10分) (2020高二上青銅峽期末) 設(shè) , 分別是橢圓E: + =1(0﹤b﹤1)的左、右焦點,過 的直線 與E相交于A、B兩點,且 , , 成等差數(shù)列。
(Ⅰ)求
(Ⅱ)若直線 的斜率為1,求b的值。
4. (10分
3、) (2019高三上北京月考) 已知橢圓 的離心率為 ,右焦點為 ,直線l經(jīng)過點F , 且與橢圓交于A , B兩點,O為坐標原點.
(1) 求橢圓的標準方程;
(2) 當直線l繞點F轉(zhuǎn)動時,試問:在x軸上是否存在定點M,使得 為常數(shù)?若存在,求出定點M的坐標;若不存在,請說明理由.
5. (10分) (2018高二上吉林期中) 已知 分別為橢圓C: 的左、右焦點,點 在橢圓上,且 軸, 的周長為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)E,F是橢圓C上異于點 的兩個動點,如果直線PE與直線PF的傾斜角互補,證明:直線EF的斜率為定值,并求出這個定值.
6.
4、 (10分) (2019高二上漠河月考) 已知橢圓 的方程是 ,雙曲線 的左右焦點分別為 的左右頂點,而 的左右頂點分別是 的左右焦點.
(1) 求雙曲線 的方程;
(2) 若直線 與雙曲線 恒有兩個不同的交點,且 與 的兩個交點A和B滿足 ,求 的取值范圍.
7. (10分) 過橢圓內(nèi)一點M(2,1)引一條弦,使弦被M點平分,求這條弦所在直線的方程.
8. (10分) (2018河北模擬) 已知橢圓 的上頂點為點 ,右焦點為 .延長 交橢圓 于點 ,且滿足 .
(1) 試求橢圓 的標準方程;
(2) 過點 作與 軸不重合的直
5、線 和橢圓 交于 兩點,設(shè)橢圓 的左頂點為點 ,且直線 分別與直線 交于 兩點,記直線 的斜率分別為 ,則 與 之積是否為定值?若是,求出該定值;若不是,試說明理由.
9. (10分) (2019高三上長春月考) 在直角坐標系 中,動點 (其中 )到點 的距離的 倍與點 到直線 的距離的 倍之和記為 ,且 .
(Ⅰ)求點 的軌跡 的方程;
(Ⅱ)設(shè)過點 的直線 與軌跡 交于 兩點,求 的取值范圍.
10. (10分) (2017高二上南昌月考) 已知橢圓的一個頂點為A(0,-1),焦點在x軸上。若右焦點F到直線x-y+2 =
6、0的距離為3。
(1) 求橢圓的方程;
(2) 設(shè)直線y=kx+m(k≠0)與橢圓相交于不同的兩點M、N。當|AM|=|AN|時,求m的取值范圍。
11. (10分) (2020茂名模擬) 在圓 上任取一點 ,過點 作 軸的垂線段 , 為垂足,當點 在圓上運動時,點 在線段 上,且 ,點 的軌跡為曲線 .
(1) 求曲線 的方程;
(2) 過拋物線 : 的焦點 作直線 交拋物線于 , 兩點,過 且與直線 垂直的直線交曲線 于另一點 ,求 面積的最小值,以及取得最小值時直線 的方程.
12. (10分) (2017江蘇)
7、如圖,在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為 ,兩準線之間的距離為8.點P在橢圓E上,且位于第一象限,過點F1作直線PF1的垂線l1 , 過點F2作直線PF2的垂線l2 .
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)若直線l1 , l2的交點Q在橢圓E上,求點P的坐標.
13. (5分) (2018北京) 已知橢圓 的離心率為 ,焦距2 .斜率為k的直線l與橢圓M有兩個不同的交點A , B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若 ,求 的最大值;
(Ⅲ)設(shè) ,直線PA與橢圓M的另一個交點為C , 直線PB與橢圓
8、M的另一個交點為D.若C,D和點 共線,求k.
14. (5分) (2018河北模擬) 已知圓 的圓心為原點,其半徑與橢圓 的左焦點和上頂點的連線線段長度相等.
(1) 求圓 的標準方程;
(2) 過橢圓右焦點的動直線 (其斜率不為0)交圓 于 兩點,試探究在 軸正半軸上是否存在定點 ,使得直線 與 的斜率之和為0?若存在,求出點 的坐標,若不存在,請說明理由.
15. (15分) (2018高二下雙流期末) 已知中心在原點 ,焦點在 軸上的橢圓 過點 ,離心率為 .
(1) 求橢圓 的方程;
(2) 設(shè)過定點 的直線 與橢圓 交于不同的兩點 ,且 ,求直線 的斜率 的取值范圍;
第 17 頁 共 17 頁
參考答案
一、 解答題 (共15題;共145分)
1、答案:略
2-1、
2-2、
3-1、
4-1、
4-2、
5-1、
6-1、
6-2、
7-1、
8-1、
8-2、
9-1、答案:略
10-1、
10-2、
11-1、
11-2、
12-1、
13-1、
14-1、
14-2、
15-1、
15-2、