喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
編號
無錫太湖學(xué)院
畢業(yè)設(shè)計(論文)
相關(guān)資料
題目:公路銑刨機瀝青輸送部分裝置的設(shè)計
信機 系 機械工程及自動化專業(yè)
學(xué) 號: 0923097
學(xué)生姓名: 黃俊胤
指導(dǎo)教師: 何雪明(職稱:副教授 )
(職稱: )
2013年5月25日
目 錄
一、畢業(yè)設(shè)計(論文)開題報告
二、畢業(yè)設(shè)計(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計劃、進(jìn)度、檢查及落實表”
四、實習(xí)鑒定表
無錫太湖學(xué)院
畢業(yè)設(shè)計(論文)
開題報告
題目:公路銑刨機瀝青輸送部分裝置的設(shè)計
信機 系 機械工程及自動化 專業(yè)
學(xué) 號: 0923097
學(xué)生姓名: 黃俊胤
指導(dǎo)教師: 何雪明(職稱:副教授 )
(職稱: )
2012年11月30日
課題來源
本課題來源于工廠。
科學(xué)依據(jù)(包括課題的科學(xué)意義;國內(nèi)外研究概況、水平和發(fā)展趨勢;應(yīng)用前景等)
(1)課題科學(xué)意義
瀝青混凝土路面銑刨機是一種高效的瀝青路面維修養(yǎng)護(hù)設(shè)備,其原理是利用滾動銑削的方法把瀝青混凝土路面局部或全部破碎。銑削下來的瀝青碎料經(jīng)再生處理后,可直接用于路面表層的重新鋪筑。主要用于公路、城市道路、機場、貨場、停車場等瀝青混凝土砼面層開挖翻新;瀝青路面擁包、油浪、網(wǎng)紋、車轍等的清除;水泥路面的拉毛及面層錯臺銑平等。隨著市政道路和高等級公路建設(shè)突飛猛進(jìn),大規(guī)模的機械化養(yǎng)護(hù)時代已經(jīng)到來。皮帶傳動機構(gòu)作為銑刨機最重要的一部分,它主要作用是將銑刨的碎料傳遞出去,其結(jié)構(gòu)的設(shè)計直接影響著銑刨機的性能。
(2)銑刨機的研究狀況及其發(fā)展前景
國外路面銑刨機起源于20世界50年代,經(jīng)過50年的發(fā)展,其產(chǎn)品已成系列化,生產(chǎn)效率一般為150-2000,銑刨寬度0.3-4.2m,最大銑刨深度可達(dá)350mm,其機電液一體化技術(shù)已趨成熟,銑削深度可通過自動找平系統(tǒng)自動控制,同時為改善作業(yè)環(huán)境,延長銑削刀具的使用壽命,設(shè)計有噴灑水裝置和密閉轉(zhuǎn)子罩殼。為了減輕勞動強度,近年來開發(fā)的產(chǎn)品都帶有回收裝置,使銑削物從銑削轉(zhuǎn)子直接輸送到運載卡車上。國外制造廠商眾多,主要有維特根、英格索蘭、比泰利、卡特彼勒、戴納派克等。
維特根在國際上處于主導(dǎo)地位,尤其是小型銑刨機更是無人能及。主要生產(chǎn)SF和DC系列銑刨機,已形成了銑刨寬度從0.3-4.2米的近20種規(guī)格的產(chǎn)品系列,最大銑削深度為350mm,我國主要以進(jìn)口該公司產(chǎn)品為主。比泰利已具有40年多制造銑刨機的歷史,其SF系列冷銑刨機有11種型號,銑刨寬度為0.6-2.1米,銑刨深度340mm。卡特彼勒主要生產(chǎn)PR和PM兩大系列,銑刨寬度為1.9-3.18,銑刨深度305mm,其銑刨機具有銑刨深度和銑刨表面自動調(diào)平自動控制功能,銑刨深度誤差為±3mm。戴納派克主要生產(chǎn)PL系列銑刨機,銑刨寬度為0.35-2.1米,銑刨深度80-150mm。
研究內(nèi)容
由于國內(nèi)外已經(jīng)具有先進(jìn)的比較完善的銑刨機機型可參考,我們的公路銑刨機設(shè)計可以充分利用現(xiàn)有資源,在原有的結(jié)構(gòu)基礎(chǔ)上進(jìn)行類比設(shè)計和優(yōu)化設(shè)計。
針對銑刨機瀝青輸送部分裝置的每一個子系統(tǒng),分析其功能、結(jié)構(gòu),了解國內(nèi)外現(xiàn)有的結(jié)構(gòu), 比較各種機構(gòu)的優(yōu)缺點,再結(jié)合當(dāng)前技術(shù)的發(fā)展,提出新的或改進(jìn)的系統(tǒng)結(jié)構(gòu)設(shè)置。
擬采取的研究方法、技術(shù)路線、實驗方案及可行性分析
(1)實驗方案
到工廠進(jìn)行實地觀察,仔細(xì)了解各部分的結(jié)構(gòu)形式,弄清其工作原理。使用UG畫出各個零件,再進(jìn)行裝配、修改,確定正確后,最后進(jìn)行有限元分析,運動仿真,以檢驗方案的合理性與可行性。
(2) 研究方法
1)實地考查
2)UG仿真
研究計劃及預(yù)期成果
研究計劃:
2012年11月12日-2012年12月25日:按照任務(wù)書要求查閱論文相關(guān)參考資料,填寫畢業(yè)設(shè)計開題報告書。
2013年1月11日-2013年3月5日:填寫畢業(yè)實習(xí)報告。
2013年3月8日-2013年3月14日:按照要求修改畢業(yè)設(shè)計開題報告。
2013年3月15日-2013年3月21日:學(xué)習(xí)并翻譯一篇與畢業(yè)設(shè)計相關(guān)的英文材料。
2013年3月22日-2013年4月11日:UG繪圖。
2013年4月12日-2013年4月25日:仿真,出工程圖。
2013年4月26日-2013年5月25日:畢業(yè)論文撰寫和修改工作。
預(yù)期成果:
了解了公路銑刨機的工作原理,基本組成部分,強化了使用UG畫圖的能力,檢驗了四年學(xué)習(xí)的知識,提高了實踐能力。
特色或創(chuàng)新之處
① 使用UG畫三維圖,出工程圖,效果明顯,方便改變參量,能夠直觀判斷方案的合理性。
② 采用固定某些參量、改變某些參量來研究問題的方法,思路清晰,簡潔明了,行之有效。
已具備的條件和尚需解決的問題
① 實驗方案思路已經(jīng)非常明確,已經(jīng)具備使用UG繪圖的能力和圖像處理方面的知識。
② 使用UG仿真的能力尚需加強
指導(dǎo)教師意見
指導(dǎo)教師簽名:
年 月 日
教研室(學(xué)科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領(lǐng)導(dǎo)簽名:
年 月 日
英文原文
Screw Compressors
N. Stosic I. Smith A. Kovacevic
Screw Compressors
Mathematical Modelling
and Performance Calculation
With 99 Figures
ABC
Prof. Nikola Stosic
Prof. Ian K. Smith
Dr. Ahmed Kovacevic
City University
School of Engineering and Mathematical Sciences
Northampton Square
London
EC1V 0HB
U.K.
e-mail: n.stosic@city.ac.uk
i.k.smith@city.ac.uk
a.kovacevic@city.ac.uk
Library of Congress Control Number: 2004117305
ISBN-10 3-540-24275-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-24275-8 Springer Berlin Heidelberg New York
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German
Copyright Law.
Springer is a part of Springer Science+Business Media
springeronline.com
_c Springer-Verlag Berlin Heidelberg 2005
Printed in The Netherlands
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Typesetting: by the authors and TechBooks using a Springer LATEX macro package
Cover design: medio, Berlin
Printed on acid-free paper SPIN: 11306856 62/3141/jl 5 4 3 2 1 0
Preface
Although the principles of operation of helical screw machines, as compressors or expanders, have been well known for more than 100 years, it is only during the past 30 years that these machines have become widely used. The main reasons for the long period before they were adopted were their relatively poor efficiency and the high cost of manufacturing their rotors. Two main developments led to a solution to these difficulties. The first of these was the introduction of the asymmetric rotor profile in 1973. This reduced the blowhole area, which was the main source of internal leakage by approximately 90%, and thereby raised the thermodynamic efficiency of these machines, to roughly the same level as that of traditional reciprocating compressors. The second was the introduction of precise thread milling machine tools at approximately the same time. This made it possible to manufacture items of complex shape, such as the rotors, both accurately and cheaply.
From then on, as a result of their ever improving efficiencies, high reliability and compact form, screw compressors have taken an increasing share of the compressor market, especially in the fields of compressed air production, and refrigeration and air conditioning, and today, a substantial proportion of compressors manufactured for industry are of this type.
Despite, the now wide usage of screw compressors and the publication of many scientific papers on their development, only a handful of textbooks have been published to date, which give a rigorous exposition of the principles of their operation and none of these are in English.
The publication of this volume coincides with the tenth anniversary of the establishment of the Centre for Positive Displacement Compressor Technology at City University, London, where much, if not all, of the material it contains was developed. Its aim is to give an up to date summary of the state of the art. Its availability in a single volume should then help engineers in industry to replace design procedures based on the simple assumptions of the compression of a fixed mass of ideal gas, by more up to date methods. These are based on computer models, which simulate real compression and expansion processes more reliably, by allowing for leakage, inlet and outlet flow and other losses, VI Preface and the assumption of real fluid properties in the working process. Also, methods are given for developing rotor profiles, based on the mathematical theory of gearing, rather than empirical curve fitting. In addition, some description is included of procedures for the three dimensional modelling of heat and fluid flow through these machines and how interaction between the rotors and the casing produces performance changes, which hitherto could not be calculated. It is shown that only a relatively small number of input parameters is required
to describe both the geometry and performance of screw compressors. This makes it easy to control the design process so that modifications can be cross referenced through design software programs, thus saving both computer resources and design time, when compared with traditional design procedures.
All the analytical procedures described, have been tried and proven on machines currently in industrial production and have led to improvements in performance and reductions in size and cost, which were hardly considered possible ten years ago. Moreover, in all cases where these were applied, the improved accuracy of the analytical models has led to close agreement between predicted and measured performance which greatly reduced development time and cost. Additionally, the better understanding of the principles of operation brought about by such studies has led to an extension of the areas of application of screw compressors and expanders.
It is hoped that this work will stimulate further interest in an area, where, though much progress has been made, significant advances are still possible.
London, Nikola Stosic
February 2005 Ian Smith
Ahmed Kovacevic
Notation
A Area of passage cross section, oil droplet total surface
a Speed of sound
C Rotor centre distance, specific heat capacity, turbulence model constants
d Oil droplet Sauter mean diameter
e Internal energy
f Body force
h Specific enthalpy h = h(θ), convective heat transfer coefficient between
oil and gas
i Unit vector
I Unit tensor
k Conductivity, kinetic energy of turbulence, time constant
m Mass
m˙ Inlet or exit mass flow rate m˙ = m˙ (θ)
p Rotor lead, pressure in the working chamber p = p(θ)
P Production of kinetic energy of turbulence
q Source term
˙Q Heat transfer rate between the fluid and the compressor surroundings˙Q= ˙Q(θ)
r Rotor radius
s Distance between the pole and rotor contact points, control volume surface
t Time
T Torque, Temperature
u Displacement of solid
U Internal energy
W Work output
v Velocity
w Fluid velocity
V Local volume of the compressor working chamber V = V (θ)
˙V
Volume flow
VIII Notation
x Rotor coordinate, dryness fraction, spatial coordinate
y Rotor coordinate
z Axial coordinate
Greek Letters
α Temperature dilatation coefficient
Γ Diffusion coefficient
ε Dissipation of kinetic energy of turbulence
ηi Adiabatic efficiency
ηt Isothermal efficiency
ηv Volumetric efficiency
? Specific variable
φ Variable
λ Lame coefficient
μ Viscosity
ρ Density
σ Prandtl number
θ Rotor angle of rotation
ζ Compound, local and point resistance coefficient
ω Angular speed of rotation
Prefixes
d differential
Δ Increment
Subscripts
eff Effective
g Gas
in Inflow
f Saturated liquid
g Saturated vapour
ind Indicator
l Leakage
oil Oil
out Outflow
p Previous step in iterative calculation
s Solid
T Turbulent
w pitch circle
1 main rotor, upstream condition
2 gate rotor, downstream condition
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………. . . . . . . . . . . . . . . 1
1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . 4
1.2 Types of Screw Compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . ….. . . . . . . . 7
1.2.1 The Oil Injected Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …... . . 7
1.2.2 The Oil Free Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . ….... . 7
1.3 Screw Machine Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 8
1.4 Screw Compressor Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 10
1.5RecentDevelopments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.1RotorProfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 13
1.5.2CompressorDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2ScrewCompressorGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 The Envelope Method as a Basis
for the Profiling of Screw Compressor Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………….. . . . . ….. . . . . . . . 19
2.2 Screw Compressor Rotor Profiles . . . . . . . . . . . . . . . . . . . . …. . . . . . . . . . . . . . . . . . . ….. . . 20
2.3 Rotor Profile Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………………. . . . . . 23
2.4 Review of Most Popular Rotor Profiles . . . . . . . . . . . . . . . ………………………….. . . . . . 23
2.4.1 Demonstrator Rotor Profile (“N” Rotor Generated) . . ………………………………….. . 24
2.4.2 SKBK Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………... . . . . . . . . . 26
2.4.3 Fu Sheng Profile . . . . . . . . . . . . . . . . . . . . . . . . . ………………………………. . . . . . . . . 27
2.4.4 “Hyper” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………………. . . 27
2.4.5 “Sigma” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………………. . . . . . 28
2.4.6 “Cyclon” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………………. . . . . . 28
2.4.7 Symmetric Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………… . . . . . 29
2.4.8 SRM “A” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………… . . . . . . . 30
2.4.9 SRM “D” Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………… . . . . . . 31
2.4.10 SRM “G” Profile . . . . . . . . . . . . . . . . . . . . . . . . …………………………….. . . . . . . . . . 32
2.4.11 City “N” Rack Generated Rotor Profile . . . . . . . . . . . ………………………………… . . 32
2.4.12 Characteristics of “N” Profile . . . . . . . . . . . . . . . . . . . ………………………………. . . . 34
2.4.13 Blower Rotor Profile . . . . . . . . . . . . . . . . . . . . …………………………….. . . . . . . . . . . 39
X Contents
2.5 Identification of Rotor Position
in Compressor Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . …………………………….. . . . . . . . 40
2.6 Tools for Rotor Manufacture . . . . . . . . . . . . . . . . . . . . . . …………………………. . . . . . . . 45
2.6.1 Hobbing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . ………….…..………………. . . . . . . . . . 45
2.6.2 Milling and Grinding Tools . . . . . . . . . . . . . . . . . . . ……………………………….... . . . . 48
2.6.3 Quantification of Manufacturing Imperfections . . . . . ……………………………….... . . 48
3 Calculation of Screw Compressor Performance . . . . . . . . . . ………………………………. . . 49
3.1 One Dimensional Mathematical Model . . . . . . . . . . . . . . …………………………... . . . . . . 49
3.1.1 Conservation Equations
for Control Volume and Auxiliary Relationships . . . . ……………………………………….. . . 50
3.1.2 Suction and Discharge Ports . . . . . . . . . . . . . . . . . . . ………………………………... . . . . 53
3.1.3 Gas Leakages . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………… . . . . . . . . . . 54
3.1.4 Oil or Liquid Injection . . . . . . . . . . . ……………………………….. . . . . . . . . . . . . . . . . . 55
3.1.5 Computation of Fluid Properties . . . . . . . . …………………………………. . . . . . . . . . . . 57
3.1.6 Solution Procedure for Compressor Thermodynamics . …………………………………... 58
3.2 Compressor Integral Parameters . . . . . . . . . . . . . . . . . . . ………………………….. . . . . . . . 59
3.3 Pressure Forces Acting
on Screw Compressor Rotors . . . . . . . . . . . . . . . . . . . . . . …………………………….. . . . . . . . 61
3.3.1 Calculation of Pressure Radial Forces and Torque . . . . ………………………………….. 61
3.3.2 Rotor Bending Deflections . . . . . . . . . . . . . . . . . . . . . ……………………………….. . . . 64
3.4 Optimisation of the Screw Compressor Rotor Profile,
Compressor Design and Operating Parameters . . . . . . . . . . ……………………………….. . . . 65
3.4.1 Optimisation Rationale . . . . . . . . . . . . . . . . . . . . . . . . ……………………………….. . . . 65
3.4.2 Minimisation Method Used
in Screw Compressor Optimisation . . . . . . . . . . . ……………………………………… . . . . . . 67
3.5 Three Dimensional CFD and Structure Analysis
of a Screw Compressor . . . . . . . . . . . . . . . . . . . . . . . . . …………………………….. . . . . . . . . 71
4 Principles of Screw Compressor Design . . . . . . . . . . . …………………………… . . . . . . . . 77
4.1 Clearance Management. . . . . . . . . . . . . . . . . . . . . . . . ………….….………… . . . . . . . . . . 78
4.1.1 Load Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………….………………….. . . . 79
4.1.2 Compressor Size and Scale . . . . . . . . . . . . . . ………………………………. . . . . . . . . . . 80
4.1.3 Rotor Configuration . . . . . . . . . . . . . . . . . . . . . . . ……………………………... . . . . . . . 82
4.2 Calculation Example:
5-6-128mm Oil-Flooded Air Compressor . . . . . . . . . . . . . . . ……………………………... . . . 82
4.2.1 Experimental Verification of the Model . . . . . . . . . . . ………………………………. . . . 84
5 Examples of Modern Screw Compressor Designs . . . . . . . ……………………………… . . . 89
5.1 Design of an Oil-Free Screw Compressor
Based on 3-5 “N” Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………. . . . . . . 90
5.2 The Design of Family
of Oil-Flooded Screw Compressors Based
on 4-5 “N” Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………………… . . . . . . . 93
Contents XI.
5.3 Design of Replacement Rotors
for Oil-Flooded Compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………………... . . 96
5.4 Design of Refrigeration Compressors . . . . . . . . . . . . . . . ………………………… . . . . . . 100
5.4.1 Optimisation of Screw Compressors for Refrigeration . . ………………………………. 102
5.4.2 Use of New Rotor Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………..103
5.4.3 Rotor Retrofits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………………………. . . 103
5.4.4 Motor Cooling Through the Superfeed Port
in Semihermetic Compressors . . . . . . . . . . . . . . . . . . . …………………………………… . . . 103
5.4.5 Multirotor Screw Compressors . . . . . . . . . . . . . . . . . …………………………….... . . . . 104
5.5 Multifunctional Screw Machines . . . . . . . . . . . . . . . . . . ……………………….. . . . . . . . . 108
5.5.1 Simultaneous Compression and Expansion
on One Pair of Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . …………………………….………. . 108
5.5.2 Design Characteristics of Multifunctional Screw Rotors ………………………………..109
5.5.3 Balancing Forces on Compressor-Expander Rotors . …………………..……………. . . 110
5.5.4 Examples of Multifunctional Screw Machines . . . . . . . . ……………………………….. 111
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………… . . . . . . . . . 117
A Envelope Method of Gearing . . . . . . . . . . . . . . . . . . . . . . . . ………………………… . . . . . 119
B Reynolds Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . …………………………. . . . . . . 123
C Estimation of Working Fluid Properties . . . . . . . . . . . . . . . …………………………….. . . . 127
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………… . . . . . . . . . . 133
中文譯文
螺桿壓縮機
N.斯托西奇史密斯先生A科瓦切維奇
螺桿壓縮機
計算的數(shù)學(xué)模型和性能
尼古拉教授
斯托西奇教授
伊恩史密斯博士
艾哈邁德科瓦切維奇
工程科學(xué)和數(shù)學(xué)
北安普敦廣場倫敦城市大學(xué)
英國
電子郵件:n.stosic@city.ac.uk
i.k.smith@city.ac.uk
a.kovacevic@city.ac.uk
國會圖書館控制號:2004117305
isbn-10 3-540-24275-9 紐約施普林格柏林海德堡
isbn-13 978-3-540-24275-8 紐約施普林格柏林海德堡
這項工作是受版權(quán)保護(hù),我們保留所有權(quán)利。無論材料的全部或部分關(guān)注的是特定的權(quán)利,尤其是翻譯,轉(zhuǎn)載,插圖,朗誦,廣播復(fù)用或以任何其他方式復(fù)制,并在銀行數(shù)據(jù)存儲的權(quán)利。本出版物或其部分僅僅是在1965年9月9日的德國版權(quán)法規(guī)定允許復(fù)制,目前的版本,并允許使用必須得到施普林格的允許。違法行為將會遭受德國版權(quán)法的起訴。
施普林格是施普林格科學(xué)+商業(yè)媒體的一部分
springeronline.com
施普林格出版社柏林印刷在荷蘭海德堡2005
一般描述性名稱,注冊域名,商標(biāo)的使用,本出版物中做等。
排版:由作者使用施普林格乳膠宏包封面設(shè)計:中部,柏林
打印在無酸紙旋轉(zhuǎn):11306856 62/3141/JL 543210
雖然螺旋機的工作原理,壓縮機或膨脹機,已超過100年,這是在過去的30年里,這些機器已經(jīng)被廣泛使用。主要因為以前他們采取了相對貧窮的效率和制造成本高的轉(zhuǎn)子。兩個主要的技術(shù)革新解決了這些困難。第一個出現(xiàn)在1973年的不對稱轉(zhuǎn)子。這減少了打擊孔的面積,這是內(nèi)部泄漏的主要來源,約90%,從而提高了熱力學(xué)效率,這些機器大約是傳統(tǒng)的往復(fù)式壓縮機的同一水平。第二個是精密螺紋銑削機床。這使它能夠制造形狀復(fù)雜的物品,如轉(zhuǎn)子,既準(zhǔn)確又便宜。
從那以后,由于他們不斷改進(jìn),可靠性高性能和緊湊的形式,螺桿壓縮機已越來越多的占領(lǐng)壓縮機市場,尤其是在壓縮空氣生產(chǎn)的領(lǐng)域,制冷和空調(diào),而今天,制造工業(yè)壓縮機占相當(dāng)大的比例是也這種類型的。
盡管,現(xiàn)在廣泛使用的螺桿壓縮機和許多科學(xué)發(fā)展論文出版,只有一小部分教科書已經(jīng)出版,使其操作和沒有這些原則的論述嚴(yán)謹(jǐn)是英文的。
本書的出