《浙江省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練2 平面向量、復(fù)數(shù)、框圖及合情推理 文》由會員分享,可在線閱讀,更多相關(guān)《浙江省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練2 平面向量、復(fù)數(shù)、框圖及合情推理 文(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題升級訓(xùn)練2 平面向量、復(fù)數(shù)、框圖及合情推理
(時間:60分鐘 滿分:100分)
一、選擇題(本大題共8小題,每小題5分,共40分)
1.已知i是虛數(shù)單位,則=( ).
A.1-2i B.2-i
C.2+i D.1+2i
2.在復(fù)平面內(nèi),復(fù)數(shù)所對應(yīng)的點位于( ).
A.第一象限 B.第二象限
C.第三象限 D.第四象限
3.閱讀下面的程序框圖,若輸出s的值為-7,則判斷框內(nèi)可填寫( ).
A.i<3? B.i<4? C.i<5? D.i<6?
4.(2012·浙大附中3月月考,6)如果執(zhí)行
2、下面的程序框圖,那么輸出的S為( ).
A.S=3 B.S=
C.S= D.S=-2
5.已知向量a=(1,2),a·b=5,|a-b|=2,則|b|=( ).
A. B.2 C.5 D.25
6.如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為(n≥2),其余每個數(shù)是它下一行左右相鄰兩數(shù)的和,如=+,=+,=+,…,則第7行第4個數(shù)(從左往右數(shù))為( ).
A. B. C. D.
7.已知兩點A(1,0),B(1,),O為坐標(biāo)原點,點C在第二
3、象限,且∠AOC=,=-2+λ(λ∈R),則λ=( ).
A.- B. C.-1 D.1
8.(2012·杭師大附中高三月考,9)如圖,O為△ABC的外心,AB=4,AC=2,∠BAC為鈍角,M是邊BC的中點,則·的值為( ).
A.2 B.12
C.6 D.5
二、填空題(本大題共4小題,每小題4分,共16分)
9.(2012·浙江重點中學(xué)協(xié)作體高三調(diào)研,11)已知復(fù)數(shù)z滿足=3(i為虛數(shù)單位),則復(fù)數(shù)z的實部與虛部之和為______.
10.兩點等分單位圓時,有相應(yīng)正確關(guān)系為sin α+sin(π+α)=0;三點
4、等分單位圓時,有相應(yīng)正確關(guān)系為sin α+sin+sin=0.由此可以推知:四點等分單位圓時的相應(yīng)正確關(guān)系為__________.
11.已知向量a,b滿足|a|=2|b|≠0,且關(guān)于x的函數(shù)f(x)=2x3+3|a|x2+6a·bx+5在實數(shù)集R上單調(diào)遞增,則向量a,b的夾角的取值范圍是__________.
12.在四邊形ABCD中,==(1,1),·+·=·,則四邊形ABCD的面積為__________.
三、解答題(本大題共4小題,共44分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟)
13.(本小題滿分10分)A,B,P是直線l上不同的三點,點O在直線l外,若=m+(2m-
5、3)(m∈R),求的值.
14.(本小題滿分10分)已知函數(shù)f(x)=,g(x)=.
(1)證明f(x)是奇函數(shù);
(2)分別計算f(4)-5f(2)g(2),f(9)-5f(3)g(3)的值,由此概括出涉及函數(shù)f(x)和g(x)對所有不等于0的實數(shù)x都成立的一個等式,并證明.
15.(本小題滿分12分)已知向量a=(cos θ,sin θ),θ∈[0,π],向量b=(,-1).
(1)若a⊥b,求θ的值;
(2)若|2a-b|<m恒成立,求實數(shù)m的取值范圍.
16.(本小題滿分12分)已知向量a=(cos θ,sin θ)和b=(-sin θ,cos θ),θ∈.
(1)求|
6、a+b|的最大值;
(2)若|a+b|=,求sin 2θ的值.
參考答案
一、選擇題
1.D 解析:∵===1+2i,∴選D.
2.D 解析:z====1+2i,則=1-2i,故選D.
3.D 解析:i=1,s=2;
s=2-1=1,i=1+2=3;
s=1-3=-2,i=3+2=5;
s=-2-5=-7,i=5+2=7.
因輸出s的值為-7,循環(huán)終止,故判斷框內(nèi)應(yīng)填“i<6?”,故選D.
4.B 解析:由題圖可知S1=3,S2=2-=,
S3=2-=,S4=2-4=-2,S5=2+1=3,
則有Sn+4=Sn,故S2 010=S2=.
5.C 解析:∵|a-b
7、|2=(a-b)2=20,
∴|a|2+|b|2-2a·b=20.(*)
又a=(1,2),a·b=5,
∴(*)式可化為5+|b|2-10=20,
∴|b|2=25,
∴|b|=5.
6.A 解析:由“第n行有n個數(shù)且兩端的數(shù)均為(n≥2)”可知,第7行第1個數(shù)為,由“其余每個數(shù)是它下一行左右相鄰兩數(shù)的和”可知,第7行第2個數(shù)為-=,同理,第7行第3個數(shù)為-=,第7行第4個數(shù)為-=.
7.B 解析:如圖所示:
∠AOC=,根據(jù)三角函數(shù)的定義,可設(shè)C.
∵=-2+λ,
∴=(-2,0)+(λ,λ),
∴解得λ=.
8.D 解析:設(shè)∠OAB=α,∠OAC=β,OA=R
8、,
則cos α=,cos β=,
從而·=4Rcos α=8,·=2Rcos β=2,
則·=(+)·=(·+·)=5,
故選D.
二、填空題
9. 解析:由=3,得z=1+i,則復(fù)數(shù)z的實部與虛部之和為.
10.sin α+sin+sin(α+π)+sin=0 解析:由類比推理可知,四點等分單位圓時,α與α+π的終邊互為反向延長線,α+與α+的終邊互為反向延長線,如圖.
11. 解析:依題意有f′(x)=6x2+6|a|x+6a·b≥0對于任意的實數(shù)x恒成立,
從而有Δ=|a|2-4a·b≤0,即有a·b≥,
則cos〈a,b〉==≥=,
得0≤〈a,b〉≤.
9、12. 解析:由==(1,1),可得||=||=且四邊形ABCD是平行四邊形,再由·+·=·可知D在∠ABC的角平分線上,且以及上單位邊長為邊的平行四邊形的一條對角線長PB=,因此∠ABC=,所以AB=BC,S?ABCD=AB·BC·sin∠ABC=×sin=.
三、解答題
13.解:由=m+(2m-3)(m∈R),
得=m(-)+(2m-3),
即(1-m)=-m+(2m-3),
因A,B,P是直線l上不同的三點,點O在直線l外,
則有-+=1,得m=2.
從而有=2+,即=2,
則=2.
14.(1)證明:f(x)的定義域為(-∞,0)∪(0,+∞),
又f(-x)==
10、=-f(x),
故f(x)是奇函數(shù).
(2)解:計算知f(4)-5f(2)g(2)=0,f(9)-5f(3)g(3)=0,于是猜測f(x2)-5f(x)g(x)=0(x∈R且x≠0).
證明:f(x2)-5f(x)g(x)=-5×·=0.
15.解:(1)∵a⊥b,
∴cos θ-sin θ=0,得tan θ=.
又θ∈[0,π],∴θ=.
(2)∵2a-b=(2cos θ-,2sin θ+1),
∴|2a-b|2=(2cos θ-)2+(2sin θ+1)2
=8+8=8+8sin.
又θ∈[0,π],
∴θ-∈.
∴sin∈.
∴|2a-b|2的最大值為16.
∴|2a-b|的最大值為4.
又|2a-b|<m恒成立,∴m>4.
16.解:(1)a+b=(cos θ-sin θ+,cos θ+sin θ),
|a+b|=
=
=
=2.
∵θ∈,∴≤θ+≤,
∴-≤cos≤.
∴|a+b|max=.
(2)由已知|a+b|=,得cos=,
sin 2θ=-cos 2
=1-2cos2
=1-2×=.