九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

浙江省2013年高考數(shù)學第二輪復習 專題四 數(shù)列第1講 等差數(shù)列、等比數(shù)列 文

上傳人:zhu****ng 文檔編號:148260915 上傳時間:2022-09-04 格式:DOC 頁數(shù):7 大?。?.94MB
收藏 版權申訴 舉報 下載
浙江省2013年高考數(shù)學第二輪復習 專題四 數(shù)列第1講 等差數(shù)列、等比數(shù)列 文_第1頁
第1頁 / 共7頁
浙江省2013年高考數(shù)學第二輪復習 專題四 數(shù)列第1講 等差數(shù)列、等比數(shù)列 文_第2頁
第2頁 / 共7頁
浙江省2013年高考數(shù)學第二輪復習 專題四 數(shù)列第1講 等差數(shù)列、等比數(shù)列 文_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《浙江省2013年高考數(shù)學第二輪復習 專題四 數(shù)列第1講 等差數(shù)列、等比數(shù)列 文》由會員分享,可在線閱讀,更多相關《浙江省2013年高考數(shù)學第二輪復習 專題四 數(shù)列第1講 等差數(shù)列、等比數(shù)列 文(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題四 數(shù)列第1講 等差數(shù)列、等比數(shù)列 真題試做 1.(2012·遼寧高考,文4)在等差數(shù)列{an}中,已知a4+a8=16,則a2+a10=(  ). A.12 B.16 C.20 D.24 2.(2012·安徽高考,文5)公比為2的等比數(shù)列{an}的各項都是正數(shù),且a3a11=16,則a5=(  ). A.1 B.2 C.4 D.8 3.(2012·北京高考,文6)已知{an}為等比數(shù)列.下面結(jié)論中正確的是(  ). A.a(chǎn)1+a3≥2a2 B.a(chǎn)+a≥2a C.若a1=a3,則a1=a2 D.若a3>a1,則a4>a2

2、 4.(2012·遼寧高考,文14)已知等比數(shù)列{an}為遞增數(shù)列.若a1>0,且2(an+an+2)=5an+1,則數(shù)列{an}的公比q=__________. 5.(2012·陜西高考,文16)已知等比數(shù)列{an}的公比q=-. (1)若a3=,求數(shù)列{an}的前n項和; (2)證明:對任意k∈N+,ak,ak+2,ak+1成等差數(shù)列. 考向分析 高考中對等差(等比)數(shù)列的考查主、客觀題型均有所體現(xiàn),一般以等差、等比數(shù)列的定義或以通項公式、前n項和公式為基礎考點,常結(jié)合數(shù)列遞推公式進行命題,主要考查學生綜合應用數(shù)學知識的能力以及計算能力等,中低檔題占多數(shù).考查的熱點主要有三個方面

3、:(1)對于等差、等比數(shù)列基本量的考查,常以客觀題的形式出現(xiàn),考查利用通項公式、前n項和公式建立方程組求解,屬于低檔題;(2)對于等差、等比數(shù)列性質(zhì)的考查主要以客觀題出現(xiàn),具有“新、巧、活”的特點,考查利用性質(zhì)解決有關計算問題,屬中低檔題;(3)對于等差、等比數(shù)列的判斷與證明,主要出現(xiàn)在解答題的第一問,是為求數(shù)列的通項公式而準備的,因此是解決問題的關鍵環(huán)節(jié). 熱點例析 熱點一 等差、等比數(shù)列的基本運算 【例1】(2012·福建莆田質(zhì)檢,20)設數(shù)列{an}的前n項和為Sn,已知a1=1,等式an+an+2=2an+1對任意n∈N*均成立. (1)若a4=10,求數(shù)列{an}的通項公

4、式; (2)若a2=1+t,且存在m≥3(m∈N*),使得am=Sm成立,求t的最小值. 規(guī)律方法 此類問題應將重點放在通項公式與前n項和公式的直接應用上,注重五個基本量a1,an,Sn,n,d(q)之間的轉(zhuǎn)化,會用方程(組)的思想解決“知三求二”問題.我們重在認真觀察已知條件,在選擇a1,d(q)兩個基本量解決問題的同時,看能否利用等差、等比數(shù)列的基本性質(zhì)轉(zhuǎn)化已知條件,否則可能會導致列出的方程或方程組較為復雜,無形中增大運算量.同時在運算過程中注意消元法及整體代換的應用,這樣可減少計算量. 特別提醒:(1)解決等差數(shù)列{an}前n項和問題常用的有三個公式:Sn=;Sn=na1+d;Sn

5、=An2+Bn(A,B為常數(shù)),靈活地選用公式,解決問題更便捷; (2)利用等比數(shù)列前n項和公式求和時,不可忽視對公比q是否為1的討論. 變式訓練1 (2012·山東青島質(zhì)檢,20)已知等差數(shù)列{an}的公差大于零,且a2,a4是方程x2-18x+65=0的兩個根;各項均為正數(shù)的等比數(shù)列{bn}的前n項和為Sn,且滿足b3=a3,S3=13. (1)求數(shù)列{an},{bn}的通項公式; (2)若數(shù)列{cn}滿足cn=求數(shù)列{cn}的前n項和Tn. 熱點二 等差、等比數(shù)列的性質(zhì) 【例2】(1)在正項等比數(shù)列{an}中,a2,a48是方程2x2-7x+6=0的兩個根,則a1·a2·a2

6、5·a48·a49的值為(  ). A. B.9 C.±9 D.35 (2)正項等比數(shù)列{an}的公比q≠1,且a2,a3,a1成等差數(shù)列,則的值為(  ). A.或 B. C. D. 規(guī)律方法 (1)解決此類問題的關鍵是抓住項與項之間的關系及項的序號之間的關系,從這些特點入手選擇恰當?shù)男再|(zhì)進行求解; (2)應牢固掌握等差、等比數(shù)列的性質(zhì),特別是等差數(shù)列中若“m+n=p+q,則am+an=ap+aq”這一性質(zhì)與求和公式Sn=的綜合應用. 變式訓練2 (1)(2012·江西玉山期末,3)已知等差數(shù)列{an}的前n項和為

7、Sn,且滿足S15=25π,則tan a8的值是(  ). A. B.- C.± D.- (2)(2012·廣西桂林調(diào)研,7)已知數(shù)列{an}是等比數(shù)列,其前n項和為Sn,若公比q=2,S4=1,則S8=(  ). A.17 B.16 C.15 D.256 熱點三 等差、等比數(shù)列的判定與證明 【例3】(2012·山東淄博一模,20)已知在數(shù)列{an}中,a1=5且an=2an-1+2n-1(n≥2,且n∈N*). (1)證明:數(shù)列為等差數(shù)列; (2)求數(shù)列{an}的前n項和Sn. 規(guī)律方法 證明數(shù)列{an}為等差或等比

8、數(shù)列有兩種基本方法: (1)定義法 an+1-an=d(d為常數(shù))?{an}為等差數(shù)列; =q(q為常數(shù))?{an}為等比數(shù)列. (2)等差、等比中項法 2an=an-1+an+1(n≥2,n∈N*)?{an}為等差數(shù)列; a=an-1an+1(an≠0,n≥2,n∈N*)?{an}為等比數(shù)列. 我們要根據(jù)題目條件靈活選擇使用,一般首選定義法.利用定義法一種思路是直奔主題,例如本題方法;另一種思路是根據(jù)已知條件變換出要解決的目標,如本題還可這樣去做: 由an=2an-1+2n-1,得an-1=2an-1-2+2n,所以an-1=2(an-1-1)+2n,上式兩邊除以2n,從而可

9、得=+1,由此證得結(jié)論. 特別提醒:(1)判斷一個數(shù)列是等差(等比)數(shù)列,還有通項公式法及前n項和公式法,但不作為證明方法; (2)若要判斷一個數(shù)列不是等差(等比)數(shù)列,只需判斷存在連續(xù)三項不成等差(等比)即可; (3)a=an-1an+1(n≥2,n∈N*)是{an}為等比數(shù)列的必要而不充分條件,也就是要注意判斷一個數(shù)列是等比數(shù)列時,要注意各項不為0. 變式訓練3 在數(shù)列{an}中,an+1+an=2n-44(n∈N*),a1=-23,是否存在常數(shù)λ使數(shù)列{an-n+λ}為等比數(shù)列,若存在,求出λ的值及數(shù)列的通項公式;若不存在,請說明理由. 思想滲透 1.函數(shù)方程思想——等差(比

10、)數(shù)列通項與前n項和的計算問題: (1)已知等差(比)數(shù)列有關條件求數(shù)列的通項公式和前n項和公式,及由通項公式和前n項和公式求首項、公差(比)、項數(shù)及項,即主要指所謂的“知三求二”問題; (2)由前n項和求通項; (3)解決與數(shù)列通項、前n項和有關的不等式最值問題. 2.求解時主要思路方法為: (1)運用等差(比)數(shù)列的通項公式及前n項和公式中的5個基本量,建立方程(組),進行運算時要注意消元的方法及整體代換的運用; (2)數(shù)列的本質(zhì)是定義域為正整數(shù)集或其有限子集的函數(shù),數(shù)列的通項公式即為相應的函數(shù)解析式,因此在解決數(shù)列問題時,應用函數(shù)的思想求解. 在等比數(shù)列{an}中,an>0

11、(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3與a5的等比中項為2. (1)求數(shù)列{an}的通項公式; (2)設bn=log2an,數(shù)列{bn}的前n項和為Sn,當++…+最大時,求n的值. 解:(1)∵a1a5+2a3a5+a2a8=25, ∴a+2a3a5+a=25. 又an>0,∴a3+a5=5. 又a3與a5的等比中項為2,∴a3a5=4. 而q∈(0,1),∴a3>a5. ∴a3=4,a5=1,q=,a1=16. ∴an=16×n-1=25-n. (2)bn=log2an=5-n, ∴bn+1-bn=-1, ∴{bn}是以4為首

12、項,-1為公差的等差數(shù)列. ∴Sn=,=, ∴當n≤8時,>0;當n=9時,=0;當n>9時,<0; ∴n=8或9時,++…+最大. 1.(2012·河北冀州一模,5)在等差數(shù)列{an}中,a9=a12+6,則數(shù)列{an}前11項的和S11等于(  ). A.24 B.48 C.66 D.132 2.(2012·浙江名?!秳?chuàng)新》沖刺卷,4)設{an}是等比數(shù)列,則“a1<a2<a3”是“數(shù)列{an}是遞增數(shù)列”的(  ). A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 3.(2012·廣東汕頭質(zhì)檢,2)已

13、知等比數(shù)列{an}的公比q為正數(shù),且2a3+a4=a5,則q的值為(  ). A. B.2 C. D.3 4.(2012·河北衡水調(diào)研,6)等差數(shù)列{an}的前n項和為Sn,滿足S20=S40,則下列結(jié)論中正確的是(  ). A.S30是Sn的最大值 B.S30是Sn的最小值 C.S30=0 D.S60=0 5.已知正項等比數(shù)列{an}滿足a7=a6+2a5,若存在兩項am,an,使得=4a1,則+的最小值為________. 6.(原創(chuàng)題)已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且滿足a1 000+a1 013=π,b1b13=2,則

14、tan=__________. 7.(2012·浙江五校聯(lián)考,20)數(shù)列{an}的前n項和為Sn,已知a1=,Sn=n2an-n(n-1),n=1,2,…. (1)證明:數(shù)列是等差數(shù)列,并求Sn; (2)設bn=,求證:b1+b2+…+bn<1. 8.設{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列. (1)求數(shù)列{an}的通項公式; (2)令bn=ln a3n+1,n=1,2,…,求數(shù)列{bn}的前n項和Tn. 參考答案 命題調(diào)研·明晰考向 真題試做 1.B 解析:由等差數(shù)列的性質(zhì)知,a2+a10=a4

15、+a8=16,故選B. 2.A 解析:由題意可得,a3·a11=a=16,∴a7=4. ∴a5===1. 3.B 解析:A中當a1,a3為負數(shù),a2為正數(shù)時,a1+a3≥2a2不成立;B中根據(jù)等比數(shù)列的性質(zhì)及均值不等式得,a+a≥2=2a;C中取a1=a3=1,a2=-1,顯然a1≠a2;D中取a1=1,a2=-2,a3=4,a4=-8,可知a4>a2不成立.綜上可知僅有B正確. 4.2 解析:∵等比數(shù)列{an}為遞增數(shù)列,且a1>0, ∴公比q>1. 又∵2(an+an+2)=5an+1, ∴2an+2anq2=5anq. ∵an≠0,∴2q2-5q+2=0. ∴q=2或q

16、=(舍去). ∴公比q為2. 5.(1)解:由a3=a1q2=及q=-,得a1=1, 所以數(shù)列{an}的前n項和 Sn==. (2)證明:對任意k∈N+, 2ak+2-(ak+ak+1)=2a1qk+1-(a1qk-1+a1qk)=a1qk-1(2q2-q-1), 由q=-得2q2-q-1=0,故2ak+2-(ak+ak+1)=0. 所以,對任意k∈N+,ak,ak+2,ak+1成等差數(shù)列. 精要例析·聚焦熱點 熱點例析 【例1】解:(1)∵an+an+2=2an+1對n∈N*都成立, ∴數(shù)列{an}為等差數(shù)列. 設數(shù)列{an}的公差為d, ∵a1=1,a4=10,

17、 且a4=a1+3d=10.∴d=3. ∴an=a1+(n-1)d=3n-2. ∴數(shù)列{an}的通項公式為an=3n-2. (2)∵a2=1+t, ∴公差d=a2-a1=t. ∴an=a1+(n-1)d=1+(n-1)t. Sn=na1+d=n+t. 由am=Sm得1+(m-1)t=m+t, ∴(m-1)t=(m-1)+t. ∴t=1+t.∴t=. ∵m≥3,∴-2≤t<0.∴t的最小值為-2. 【變式訓練1】解:(1)設{an}的公差為d(d>0),{bn}的公比為q(q>0), 則由x2-18x+65=0,解得x=5或x=13. 因為d>0,所以a2<a4,則a

18、2=5,a4=13. 則解得a1=1,d=4, 所以an=1+4(n-1)=4n-3. 因為 解得b1=1,q=3. 所以bn=3n-1. (2)當n≤5時, Tn=a1+a2+a3+…+an=n+×4=2n2-n; 當n>5時,Tn=T5+(b6+b7+b8+…+bn) =(2×52-5)+=. 所以Tn= 【例2】(1)B 解析:依題意知a2·a48=3. 又a1·a49=a2·a48=a=3,a25>0, ∴a1·a2·a25·a48·a49=a=9. (2)C 解析:因為a2,a3,a1成等差數(shù)列, 所以a3=a1+a2. ∴q2=1+q. 又q>0,解

19、得q=, 故===. 【變式訓練2】(1)B 解析:∵S15=15a8=25π,∴a8=. ∴tan a8=tan =tan=-tan=-. (2)A 解析:S8=S4+(a5+a6+a7+a8)=S4+q4S4=17. 【例3】(1)證明:設bn=,b1==2, ∴bn+1-bn=-=[(an+1-2an)+1] =[(2n+1-1)+1]=1, ∴數(shù)列是首項為2,公差為1的等差數(shù)列. (2)解:由(1)知,=+(n-1)×1, ∴an=(n+1)·2n+1. ∵Sn=(2·21+1)+(3·22+1)+…+(n·2n-1+1)+[(n+1)·2n+1], ∴Sn=2

20、·21+3·22+…+n·2n-1+(n+1)·2n+n. 設Tn=2·21+3·22+…+n·2n-1+(n+1)·2n,① 則2Tn=2·22+3·23+…+n·2n+(n+1)·2n+1.② 由②-①,得 Tn=-2·21-(22+23+…+2n)+(n+1)·2n+1=n·2n+1, ∴Sn=n·2n+1+n=n·(2n+1+1). 【變式訓練3】解:假設an+1-(n+1)+λ=-(an-n+λ)成立,整理得an+1+an=2n+1-2λ,與an+1+an=2n-44比較得λ=. ∴數(shù)列是以-為首項,-1為公比的等比數(shù)列.故an-n+=-(-1)n-1,即an=n--(

21、-1)n-1. 創(chuàng)新模擬·預測演練 1.D 解析:設等差數(shù)列{an}的公差為d,則由a9=a12+6得a1+8d=(a1+11d)+6,整理得a1+5d=12,即a6=12, ∴S11=11a6=132. 2.C 解析:由a1<a2<a3,得有或則數(shù)列{an}是遞增數(shù)列,反之顯然成立,故選C. 3.B 解析:由2a3+a4=a5得2a3+a3q=a3q2, ∴q2-q-2=0,解得q=2或q=-1(舍去). 4.D 解析:由S20=S40得a21+a22+a23+…+a40=0, ∴a21+a40=0. ∴S60=(a1+a60)×60=(a21+a40)×60=0. 5.

22、 解析:由a7=a6+2a5,得q2-q-2=0,解得q=2或q=-1(舍去), ∴aman=a1qm-1·a1qn-1=16a. ∴qm+n-2=2m+n-2=24. ∴m+n-2=4.∴m+n=6. ∴+=··(m+n)=≥(5+4)=(當且僅當4m2=n2時,“=”成立). 6.- 解析:因為數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,所以由它們的性質(zhì)可得a1 000+a1 013=a1+a2 012=π,b1b13=b=2, 則tan=tan=-. 7.證明:(1)由Sn=n2an-n(n-1)(n≥2), 得Sn=n2(Sn-Sn-1)-n(n-1), 即(n2

23、-1)Sn-n2Sn-1=n(n-1), 所以Sn-Sn-1=1,對n≥2成立. S1=1,所以是首項為1,公差為1的等差數(shù)列, S1=a1=,所以Sn=,當n=1時也成立. (2)bn===-, ∴b1+b2+…+bn=1-+-+…+- =1-<1. 8.解:(1)設數(shù)列{an}的公比為q(q>1). 由已知得即 即 解得a1=1,q=2或a1=4,q=(舍去). ∴an=2n-1. (2)由(1)得a3n+1=23n, ∴bn=ln a3n+1=ln 23n=3nln 2, ∴bn+1-bn=3ln 2. ∴{bn}是以b1=3ln 2為首項,公差為3ln 2的等差數(shù)列. ∴Tn=b1+b2+…+bn===,即Tn=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!