《(福建專版)2019高考數(shù)學(xué)一輪復(fù)習(xí) 5.1 平面向量的概念及線性運(yùn)算課件 文.ppt》由會員分享,可在線閱讀,更多相關(guān)《(福建專版)2019高考數(shù)學(xué)一輪復(fù)習(xí) 5.1 平面向量的概念及線性運(yùn)算課件 文.ppt(29頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、5.1平面向量的概念及線性運(yùn)算,知識梳理,考點(diǎn)自測,1.向量的有關(guān)概念,大小,方向,長度,模,0,1個單位,相同 相反,方向相同或相反,平行,知識梳理,考點(diǎn)自測,相等,相同,相等,相反,知識梳理,考點(diǎn)自測,2.向量的線性運(yùn)算,b+a,a+(b+c),知識梳理,考點(diǎn)自測,|||a|,相同,相反,a,a+a,a+b,知識梳理,考點(diǎn)自測,3.向量共線定理 (1)向量b與a(a0)共線,當(dāng)且僅當(dāng)有唯一一個實(shí)數(shù),使得. 注:限定a0的目的是保證實(shí)數(shù)的存在性和唯一性. (2)變形形式:已知直線l上三點(diǎn)A,B,P,O為直線l外任一點(diǎn),有且只有一個實(shí)數(shù),使得,b=a,知識梳理,考點(diǎn)自測,3.首尾順次相接的多
2、個向量的和等于從第一個向量的起點(diǎn)指向最后一個向量的終點(diǎn)的向量,一個封閉圖形首尾連接而成的向量和為零向量.,知識梳理,考點(diǎn)自測,,,,,,知識梳理,考點(diǎn)自測,2.(2017全國,文4)設(shè)非零向量a,b滿足|a+b|=|a-b|,則() A.abB.|a|=|b|C.abD.|a||b|,3.已知 ,且四邊形ABCD為平行四邊形,則() A.a-b+c-d=0B.a-b+c+d=0 C.a+b-c-d=0D.a+b+c+d=0,A,解析:由|a+b|=|a-b|,平方得a2+2ab+b2=a2-2ab+b2,即ab=0. 又a,b為非零向量,故ab,故選A.,A,知識梳理,考
3、點(diǎn)自測,4.(2017北京海淀一模,文6)在ABC中,點(diǎn)D滿足 則() A.點(diǎn)D不在直線BC上 B.點(diǎn)D在BC的延長線上 C.點(diǎn)D在線段BC上 D.點(diǎn)D在CB的延長線上,D,知識梳理,考點(diǎn)自測,5.設(shè)向量a,b不平行,向量a+b與a+2b平行,則實(shí)數(shù)=.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,平面向量的有關(guān)概念 例1(1)對于非零向量a,b,“a+b=0”是“ab”的 () A.充分不必要條件B.必要不充分條件 C.充要條件D.既不充分也不必要條件 (2)給出下列命題: 若|a|=|b|,則a=b或a=-b;若A,B,C,D是不共線的四點(diǎn),則“ ”是“四邊形ABCD為平行四邊形”的充要條件;若兩個向
4、量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;a=b的充要條件是|a|=|b|,且ab. 其中真命題的序號是.,A,,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,解析: (1)若a+b=0,則a=-b, 所以ab. 若ab,則a+b=0不一定成立,故前者是后者的充分不必要條件. (2)不正確.兩個向量的長度相等,方向可以是任意的;,又A,B,C,D是不共線的四點(diǎn), 四邊形ABCD為平行四邊形. 反之,若四邊形ABCD為平行四邊形,,不正確.相等向量的起點(diǎn)和終點(diǎn)可以都不同; 不正確.當(dāng)ab且方向相反時,即使|a|=|b|,也不能得到a=b. 綜上所述,真命題的序號是.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,思考學(xué)習(xí)了向量的概念后,你對向量
5、有怎樣的認(rèn)識? 解題心得對于向量的概念應(yīng)注意以下幾條: (1)向量的兩個特征為大小和方向.向量既可以用有向線段和字母表示,也可以用坐標(biāo)表示. (2)相等向量不僅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量. (3)向量與數(shù)量不同,數(shù)量可以比較大小,向量則不能,所以向量只有相等與不相等,不可以比較大小.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,對點(diǎn)訓(xùn)練1(1)給出下列命題: 兩個具有公共終點(diǎn)的向量一定是共線向量; 兩個向量不能比較大小,但它們的模能比較大小; 若a=0(為實(shí)數(shù)),則必為零; 已知,為實(shí)數(shù),若a=b,則a與b共線. 其中錯誤命題的個數(shù)為() A.1B.2C.3D.4
6、 (2)設(shè)a0為單位向量,若a為平面內(nèi)的某個向量,則a=|a|a0;若a與a0平行,則a=|a|a0;若a與a0平行,且|a|=1,則a=a0.上述命題中,假命題的個數(shù)為.,C,3,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,解析: (1)錯誤.當(dāng)方向不同時,不是共線向量;正確.因為向量有方向,所以它們不能比較大小,但它們的模均為實(shí)數(shù),故可以比較大小; 錯誤.當(dāng)a=0時,不論為何值,a=0; 錯誤.當(dāng)==0時,a=b,此時,a與b可以是任意向量. (2)向量是既有大小又有方向的量,a與|a|a0的模相等,但方向不一定相同,故是假命題;若a與a0平行,則a與a0的方向有兩種情況:一是同向,二是反向,反向時a=-|a
7、|a0,故也是假命題.綜上所述,假命題的個數(shù)是3.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,平面向量的線性運(yùn)算,B,A,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,思考在幾何圖形中,用已知向量表示未知向量的一般思路是什么?向量的線性運(yùn)算與代數(shù)多項式的運(yùn)算有怎樣的聯(lián)系? 解題心得1.進(jìn)行向量運(yùn)算時,要盡可能地將它們轉(zhuǎn)化到三角形或平行四邊形中,充分利用相等向量、相反向量、三角形的中位線及相似三角形的對應(yīng)邊成比例等性質(zhì),把未知向量用已知向量表示出來. 2.向量的線性運(yùn)算類似于代數(shù)多項式的運(yùn)算,實(shí)數(shù)運(yùn)算中的去括號、移項、合并同類項、提取公因式等變形手段在向量的線性運(yùn)算中同樣適用.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,A,考點(diǎn)
8、一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,向量共線定理及其應(yīng)用 例3設(shè)兩個非零向量a與b不共線.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,思考如何用向量的方法證明三點(diǎn)共線? 解題心得1.證明三點(diǎn)共線問題,可用向量共線解決,但應(yīng)注意向量共線與三點(diǎn)共線的區(qū)別與聯(lián)系,當(dāng)兩向量共線且有公共點(diǎn)時,才能得出三點(diǎn)共線. 2.向量a,b共線是指存在不全為零的實(shí)數(shù)1,2,使1a+2b=0成立;若1a+2b=0當(dāng)且僅當(dāng)1=2=0時成立,則向量a,b不共線.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,D,D,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,1.平面向量的重要結(jié)論: (1)若存在非零實(shí)數(shù),使得
9、 ,則A,B,C三點(diǎn)共線. (2)相等向量具有傳遞性,非零向量的平行具有傳遞性. (3)向量可以平移,平移后的向量與原向量是相等向量. 2.a與b共線b=a(a0,為實(shí)數(shù)). 3.向量的線性運(yùn)算要滿足三角形法則和平行四邊形法則,做題時,要注意三角形法則與平行四邊形法則的要素.向量加法的三角形法則要素是“首尾相接,指向終點(diǎn)”;向量減法的三角形法則要素是“起點(diǎn)重合,指向被減向量的終點(diǎn)”;平行四邊形法則要素是“起點(diǎn)重合”.,考點(diǎn)一,考點(diǎn)二,考點(diǎn)三,1.若兩個向量起點(diǎn)相同,終點(diǎn)相同,則這兩個向量相等;但兩個相等向量不一定有相同的起點(diǎn)和終點(diǎn). 2.零向量和單位向量是兩個特殊的向量.它們的模確定,但方向不確定. 3.注意區(qū)分向量共線與向量所在的直線平行之間的關(guān)系.向量 是共線向量,但A,B,C,D四點(diǎn)不一定在同一條直線上. 4.在向量共線的充要條件中要注意“a0”,否則可能不存在,也可能有無數(shù)個.,