《人教版九年級下冊數(shù)學 26.2 第2課時 其他學科中的反比例函數(shù) 教案》由會員分享,可在線閱讀,更多相關《人教版九年級下冊數(shù)學 26.2 第2課時 其他學科中的反比例函數(shù) 教案(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2課時 其他學科中的反比例函數(shù)
1.能夠從物理等其他學科問題中建構反比例函數(shù)模型;(重點)
2.從實際問題中尋找變量之間的關系,利用所學知識分析物理等其他學科的問題,建立函數(shù)模型解決實際問題.(難點)
一、情境導入
問題:某校科技小組進行野外考察,途中遇到一片十幾米寬的濕地,為了安全、迅速通過這片濕地,他們沿著前進路線鋪墊了若干塊木板,構筑成一條臨時通道,從而順利完成任務.
問題思考:
(1)請你解釋他們這樣做的道理;
(2)當人和木板對濕地的壓力一定時,隨著木板面積S(m2)的變化,人和木板對地面的壓強p (Pa)將如何
2、變化?
二、合作探究
探究點:反比例函數(shù)在其他學科中的應用
【類型一】 反比例函數(shù)與電壓、電流和電阻的綜合
已知某電路的電壓U(V),電流I(A)和電阻R(Ω)三者之間有關系式為U=IR,且電路的電壓U恒為6V.
(1)求出電流I關于電阻R的函數(shù)表達式;
(2)如果接入該電路的電阻為25Ω,則通過它的電流是多少?
(3)如圖,怎樣調整電阻箱R的阻值,可以使電路中的電流I增大?若電流I=0.4A,求電阻R的值.
解析:(1)根據(jù)電流I(A)是電阻R(Ω)的反比例函數(shù),設出I=(R≠0)后把U=6V代入求得表達式即可;(2)將R=25Ω代入上題求得的函數(shù)關系式即可得電流的值;
3、(3)根據(jù)兩個變量成反比例函數(shù)關系確定答案,然后代入0.4A求得R的值即可.
解:(1)∵某電路的電壓U(V),電流I(A)和電阻R(Ω)三者之間有關系式U=IR,∴I=,代入U=6V得I=,∴電流I關于電阻R的函數(shù)表達式是I=;
(2)∵當R=25Ω時,I==0.24A,∴電路的電阻為25Ω時,通過它的電流是0.24A;
(3)∵I=,∴電流與電阻成反比例函數(shù)關系,∴要使電路中的電流I增大可以減小電阻.當I=0.4A時,0.4=,解得R=15Ω.
方法總結:明確電壓、電流和電阻的關系是解決問題的關鍵.
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第5題
【類型二】 反比例函
4、數(shù)與氣體壓強的綜合
某容器內充滿了一定質量的氣體,當溫度不變時,容器內氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)求出這個函數(shù)的解析式;
(2)當容器內的氣體體積是0.6m3時,此時容器內的氣壓是多少千帕?
(3)當容器內的氣壓大于240kPa時,容器將爆炸,為了安全起見,容器內氣體體積應不小于多少m3?
解析:(1)設出反比例函數(shù)關系式,根據(jù)圖象給出的點確定關系式;(2)把V=0.6m3代入函數(shù)關系式,求出p的值即可;(3)因為當容器內的氣壓大于240kPa時,容器將爆炸,可列出不等式求解.
解:(1)設這個函數(shù)的表達式為p=.根據(jù)圖象可
5、知其經(jīng)過點(2,60),得60=,解得k=120.則p=;
(2)當V=0.6m3時,p==200(kPa);
(3)當p≤240kPa時,得≤240,解得V≥.所以為了安全起見,容器的體積應不小于m3.
方法總結:根據(jù)反比例函數(shù)圖象確定函數(shù)關系式以及知道變量的值求函數(shù)值或知道函數(shù)值的范圍求自變量的范圍是解決問題的關鍵.
變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第5題
【類型三】 反比例函數(shù)與杠桿知識的綜合
公元前3世紀,古希臘科學家阿基米德發(fā)現(xiàn)了著名的“杠桿原理”,小明利用此原理,要制作一個杠桿撬動一塊大石頭,已知阻力和阻力臂不變,分別為1200N和0.5m.
(1
6、)動力F與動力臂l有怎樣的函數(shù)關系?當動力臂為1.5m時,撬動石頭至少要多大的力?
(2)若想使動力F不超過(1)題中所用力的一半,則動力臂至少要加長多少?
解析:(1)根據(jù)“動力×動力臂=阻力×阻力臂”,可得出F與l的函數(shù)關系式,將l=1.5m代入可求出F;(2)根據(jù)(1)的答案,可得F≤200,解出l的最小值,即可得出動力臂至少要加長多少.
解:(1)Fl=1200×0.5=600N·m,則F=.當l=1.5m時,F(xiàn)==400N;
(2)由題意得,F(xiàn)=≤200,解得l≥3m,故至少要加長1.5m.
方法總結:明確“動力×動力臂=阻力×阻力臂”是解題的關鍵.
變式訓練:見《學練優(yōu)
7、》本課時練習“課堂達標訓練”第7題
【類型四】 反比例函數(shù)與功率知識的綜合
某汽車的輸出功率P為一定值,汽車行駛時的速度v(m/s)與它所受的牽引力F(N)之間的函數(shù)關系如下圖所示:
(1)這輛汽車的功率是多少?請寫出這一函數(shù)的表達式;
(2)當它所受牽引力為2400N時,汽車的速度為多少?
(3)如果限定汽車的速度不超過30m/s,則F在什么范圍內?
解析:(1)設v與F之間的函數(shù)關系式為v= ,把(3000,20)代入即可;(2)當F=1200N時,求出v即可;(3)計算出v=30m/s時的F值,F(xiàn)不小于這個值即可.
解:(1)設v與F之間的函數(shù)關系式為v=,把(300
8、0,20)代入v=,得P=60000,∴這輛汽車的功率是60000W.這一函數(shù)的表達式為v=;
(2)將F=2400N代入v=,得v==25(m/s),∴汽車的速度v=3600×25÷1000=90(km/h);
(3)把v≤30代入v=,得F≥2000(N),∴F≥2000N.
方法總結:熟練掌握功率的計算公式是解決問題的關鍵.
三、板書設計
1.反比例函數(shù)與電壓、電流和電阻的綜合;
2.反比例函數(shù)與氣體壓強的綜合;
3.反比例函數(shù)與杠桿知識的綜合;
4.反比例函數(shù)與功率知識的綜合.
本節(jié)是在上一節(jié)的基礎上,進一步學習與反比例函數(shù)有關的涉及其他學科的知識.盡量選用學生熟悉的實例進行教學,使學生從身邊事物入手,真正體會數(shù)學知識來源于生活.注意要讓學生經(jīng)歷實踐、思考、表達與交流的過程,給學生留下充足的活動時間,不斷引導學生利用數(shù)學知識解決實際問題.