外文翻譯關于自動化立體倉庫使用雙貨叉的探討.doc
《外文翻譯關于自動化立體倉庫使用雙貨叉的探討.doc》由會員分享,可在線閱讀,更多相關《外文翻譯關于自動化立體倉庫使用雙貨叉的探討.doc(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第12頁 翻譯部分 英文原文 An Analysis of Dual Shuttle Automated Storage/Retrieval Systems An Analysis of Dual Shuttle Automated Storage/Retrieval Systems Adhinarayan Keserla Brett A. Peters Abstract: This paper addresses the throughput improvement possi
2、ble with the use of a dual shuttle automated storage and retrieval system. With the use of such a system, travel between time in a dual command cycle is virtually eliminated resulting in a large throughput improvement. The dual shuttle system is then extended to perform an equivalent of two dual com
3、mands in one cycle in a quadruple command mode (QC). A heuristic that sequences retrievals to minimize travel time in QC mode is developed. Monte Carlo simulation results are provided for evaluating the heuristics performance and show that it performs well, achieving large throughput improvements co
4、mpared with that of the dual command cycle operating under the nearest neighbor retrieval sequencing heuristic. Key words: Automated Storage/Retrieval Systems Design; Automated Storage/Retrieval Systems Operation; Material Handling Systems; Performance Modeling and Analysis Introduction: A
5、utomated storage/retrieval systems (AS/RS) are widely used in warehousing and manufacturing applications. A typical unit load AS/RS consists of storage racks, S/R machines, link conveyors, and input/output (I/O) stations. An important system performance measure is the throughput capacity of the syst
6、em. The throughput capacity for a single aisle is the inverse of the mean transaction time, which is the expected amount of time required for the S/R machine to store and/or retrieve a unit load. The service time for a transaction includes both S/R machine travel time and pickup/deposit time. This t
7、ime typically depends on the configuration of the storage rack and the S/R machine specifications. Han et al. [2] improved the throughput capacity of the AS/RS through sequencing retrievals. Intelligently sequencing the retrievals can reduce unproductive travel between times when the S/R machine i
8、s traveling empty and thereby increase the throughput. They develop an expression for the maximum possible improvement in throughput if travel between is eliminated for an AS/RS that is throughput bound and operates in dual command mode. In essence, this means that if the S/R machine travels in a si
9、ngle command path but performs both storage and a retrieval operation, the above throughput improvement could be obtained. In this paper, we analyze an alternative design of the S/R machine that has two shuttles instead of one as in a regular AS/RS. The new design eliminates the travel between the
10、storage and retrieval points and performs both storage and retrieval at the point of retrieval, thereby achieving the maximum throughput increase calculated by Han et al. [3]. The dual shuttle AS/RS is a new design aimed at improving S/R machine performance. Most studies on AS/RS systems have been
11、 based on a single shuttle design. In our analysis of the dual shuttle AS/RS performance, we build upon these previous research results. 1 Alternative S/R Machine Design A typical unit-load AS/RS has an S/R machine operating in each aisle of the system. The S/R machine has a mast which is support
12、ed at the floor and the ceiling and travels horizontally within the aisle. Connected to this mast is a shuttle mechanism that carries the unit load and moves vertically up and down the mast. The shuttle mechanism also transfers loads in and out of storage locations in the rack. Figure 1 provides an
13、illustration of the single shuttle S/R machine. Figure 1. Single Shuttle S/R Machine Design A typical single shuttle AS/RS can perform a single command cycle or a dual command cycle. A single command cycle consists of either storage or retrieval. For storage, the time consists of the time to pic
14、kup the load at the I/O point, travel to the storage point, deposit the load at that point, and return to the I/O point. The time for retrieval is developed similarly. A dual command cycle involves both storage and retrieval in the same cycle. The cycle time involves the time to pickup the load at
15、 the I/O point, travel to the storage location, place the load in the rack, travel empty to the retrieval location, retrieve a load, return to the I/O point, and deposit the load at the I/O point. If we critically analyze the dual command cycle of the S/R machine (shown by the solid line in Figure
16、 2), a potential open location for a future storage is created when a retrieval is performed. Furthermore, if both a retrieval and a storage are performed at the same point, the travel between time (TB) is eliminated, and the travel time will be equal to the single command travel time. With the exis
17、ting AS/RS design, this mode of operation is not possible; therefore, an alternative to the S/R machine, a dual shuttle R/S machine, is proposed. Figure 2. Dual Command Travel Paths of S/R and R/S Machines 2 R/S Machine Operations Consider an S/R machine with two shuttle mechanisms instead of o
18、ne. This new S/R machine could now carry two loads simultaneously. Each shuttle mechanism could operate independently of the other, so that individual loads can still be stored and retrieved. An illustration of the dual shuttle S/R machine is shown in Figure 3. This new S/R machine would operate as
19、described below. Figure 3. Dual Shuttle S/R Machine Design The S/R machine picks up the item to be stored from the I/O point, loads it into the first shuttle, and moves to the retrieval location. After reaching the retrieval location, the second shuttle is positioned to pickup the item to be ret
20、rieved. After retrieval, the S/R machine positions the first shuttle and deposits the load. The S/R machine then returns to the I/O point. The operation can easily be seen as a single command operation plus a small travel time for repositioning the S/R machine between the retrieval and storage (as w
21、ell as the additional pickup and deposit time associated with the second load). Therefore, the S/R machine now operates as an R/S machine performing a retrieval first then a storage in a dual command cycle. Since the R/S machine has two shuttles, the position of the shuttles has a role in the oper
22、ation of the system. With two shuttles, the R/S machine is able to perform a dual command cycle at one location in the rack. This operation is accomplished by first retrieving the load onto the empty shuttle, transferring the second shuttle into position, and storing the load into the empty location
23、 in the rack. However, the choice of shuttle configuration does not impact the analysis in this paper. To perform these operations, the R/S machine must move the second shuttle into position after the first shuttle has completed the retrieval. Due to the small distance involved, the R/S machine wi
24、ll use a slower creep speed for positioning, but this travel time is generally small. Furthermore, an amount of creep time is usually included in the pickup and deposit time to account for this required positioning. A second design characteristic is that additional clearance beyond the first and las
25、t row and column of the rack must be provided for overtravel of the R/S machine to accommodate both shuttle mechanisms. 3 Throughput Improvement To estimate the throughput improvement by the dual shuttle system over existing designs, we use the expressions for single command and dual command cycl
26、e times developed by Bozer and White [1] and the tabulated values for the nearest neighbor heuristic from Han et al. [4]. In developing the expressions, the authors in [1] and [4] made several assumptions. The same assumptions hold for the new design and include the following. 1 The rack is consid
27、ered to be a continuous rectangular pick face where the I/O point is located at the lower left-hand corner of the rack. 2 The rack length and height, as well as the S/R machine velocity in the horizontal and vertical directions, are known. 3 The S/R machine travels simultaneously in the horizont
28、al and vertical directions. In calculating the travel time, constant velocities are used for horizontal and vertical travel. Acceleration and deceleration effects are implicitly accounted for in either a reduced top speed or an increased pickup and deposit time. A creep speed is used for repositioni
29、ng the dual shuttle. 4 Pickup and deposit times associated with load handling are assumed constant and, therefore, these could be easily added into the cycle time expressions. 5 The S/R machine operates either on a single or dual command basis, i.e., multiple stops in the aisle are not allowed.
30、(This assumption is later relaxed for the new R/S machine to perform a quadruple command cycle.) 6 For the nearest neighbor heuristic, a block of n retrievals is available for sequencing and there are m initial open locations in the rack face. 4 Dual Shuttle S/R Systems The new design of the S
31、/R machine has two shuttles and therefore could be operated as a dual shuttle system: carrying two loads and depositing them, retrieving two loads, and returning to the I/O point to deliver them as shown in Figure 4. The above operation can be performed by storing and retrieving the loads at four di
32、fferent locations. Therefore, the travel time would consist of the time for a single command travel plus three travel between times. To more efficiently perform the 4 operations, a retrieval and storage performed at one location is interspersed with a dual command operation. This mode of operation,
33、termed the quadruple command (QC) cycle, eliminates one travel between and is more efficient than the previous mode mentioned above (see Figure 5). The QC cycle can be performed with storages at randomized locations and retrievals processed in a first-come-first-served (FCFS) manner. However, by int
34、elligently sequencing the retrieval list, the travel time in performing the four operations can be significantly reduced. This type of analysis was used by Han et al. [4] to improve the throughput of a single load AS/RS. In our paper, we build on the results of their analysis. The notation and the a
35、ssumptions mentioned in section 2.2. still hold, except that multiple stops of the S/R machine are now allowed. 5 Conclusions This paper performs an analysis of dual shuttle automated storage and retrieval systems. Several contributions have been made including the following. 1 Throughput impro
36、vements in the range of 40-45% can be obtained using the quadruple command cycle relative to dual command cycles with a single shuttle system. 2 With the dual shuttle design, travel between is virtually eliminated for a dual command cycle. The dual shuttle system shows promise for situations re
37、quiring high throughput. The main disadvantage with the new design is the extra cost of the S/R machine. An economic evaluation is needed to determine if it is appropriate for a particular situation. However, based on throughput performance, the dual shuttle design appears promising. The concept o
38、f dual shuttle systems can also be extended to other material handling systems. Furthermore, research is needed to consider other storage strategies, such as class based storage policies, to examine their impact on throughput in conjunction with the dual shuttle design. This paper provides a framewo
39、rk for analyzing dual shuttle AS/RS, and it provides a foundation for other material handling research related to this concept. 中文譯文 關于自動化立體倉庫使用雙貨叉的探討 Adhinarayan Keserla 布雷特 A. 彼得 摘 要: 本文主要探討的是可以提高生產(chǎn)效率的雙貨叉立體倉庫系統(tǒng)。通過使用該系統(tǒng),可以縮短堆垛機在一個雙任務流程中的運行時間,從而大大提高了倉庫的工作效率。雙貨叉?zhèn)}庫系統(tǒng)相當于一個四任務指令模塊(quadru
40、ple command mode簡稱QC)中的雙指令任務書流程。一個很有建設性的思想被提出來,即通過堆垛機按某一順序運行可以縮短在一個(QC)中的運行時間,蒙地卡羅對此進行了模擬對比實驗,實驗結果證明確實提高了堆垛機的搬運效率,這就說明了這種方案的可行性。 關鍵詞:自動化立體倉庫; 自動化立體倉庫的控制;功能模擬和分析 1 緒論 自動化立體倉庫被廣泛地應用于倉儲和制造設備當中。典型的單位貨物裝卸立體倉庫由儲藏架,堆垛機,自動運輸小車,和入庫/出庫臺組成。衡量一個立體倉庫系統(tǒng)的優(yōu)劣的主要標準是倉庫系統(tǒng)的工作效率。立體倉庫的工作效率與堆垛機運行一個工作流程所需的時間成反比,這個工作流
41、程時間包括堆垛機裝卸貨物的時間,顯然堆垛機裝卸貨物的時間在一定程度上取決于堆垛機和貨架的具體結構和規(guī)格。 Han 通過立體倉庫返回站點的排列提高了立體倉庫的工作能力,合理的排列返回站點堆垛機能減少不必要的行程,從而縮短了時間,提高了效率。這樣他們就提出了一種最大限度提高效率理論,即如果堆垛機在雙指令模塊流程中可以縮短運行時間那么這將最大程度的提高立體倉庫的工作效率。也就是說,如果堆垛機運行的是單命令路線,卻能完成存貨和返回的動作,則工作效率的提高也就實現(xiàn)了。 在論文中,我們分析了一種可供選擇的堆垛機設計方法,這種設計出來的堆垛機與一般的堆垛機不同,在原來的基礎增加了一個貨叉,這種新穎設計
42、的堆垛機擁有兩個貨叉,它在運作中可以縮短在貨架到返回點之間的運行時間。這種設計方案符合 Han 所說的最大效率理論。 雙貨叉堆垛機主要是針對如何提高堆垛機的工作能力這一問題所設計的一種新穎堆垛機。目前,立體倉庫系統(tǒng)的研究是以單貨叉堆垛機為主要對象。在本文關于雙貨叉堆垛機功能的分析也是建立有前人研究的基礎上的。 2 可供選擇的堆垛機設計 一個基本的單一裝載立體倉庫系統(tǒng)中,每一個貨架巷道內(nèi)都有一臺可供操作的堆垛機,每臺堆垛機有一根立柱被固定在天花板和地面之間,這根立柱可以在巷道內(nèi)的水平位置移動。與立柱相連的是一個貨叉機構,它可以載著貨物沿著立柱上下移動,貨叉也可以作相對于貨格的水平取貨和存貨
43、運動。 一個基本的單貨叉堆垛機立體倉庫系統(tǒng)能夠完成一個單指令作業(yè)流程也能完成一個雙指令作業(yè)流程。一個單指令作業(yè)流程由存貨和取貨組成,對于一個存貨過程所需時間包括堆垛機在入庫處裝載貨物,行駛到目標貨格,卸下貨物,然后回到倉庫入口處這一連串動作總共所需的時間。同樣可以分析取貨過程所需時間。 一個雙指令流程就是在同一個工作流程中完成存貨和取貨的操作。這個過程時間包括從入口處裝貨,運行到存貨貨格位置,把貨放在貨架上,空運行到取貨貨格位置,從貨架上取下貨物,回到倉庫入口處,并卸下貨物這一過程總共需要的時間。 如果我們對堆垛機的雙指令工作流程路線稍加分析就會發(fā)現(xiàn),當在完成一個取貨運作時,就暗示著可以
44、進行下一個存貨運作,而且,如果在同一地方可以進行存貨和取貨運作,那么運行時間將被縮短,這個運行時間相當于運行一個單指令流程所需的時間。就目前已存在的立體倉庫設計,要實現(xiàn)這種操作是不可能的,因此,另外一種雙貨叉式的堆垛機就應運而生了。 3 堆垛機的運作 設想一臺安裝了兩個貨叉的堆垛機,這種新穎的堆垛機可以同時裝載兩件貨物,為了兩件貨物分別能存庫和出庫,所以堆垛機的兩個貨叉機構能夠相互獨立運行,具體結構如圖3所示,這種堆垛機的工作過程將在下文詳細介紹。 堆垛機從倉庫入口處將要被儲存的貨物裝載到第一個貨叉平臺上,然后向取貨的位置移動.到達要取貨的位置之后,第二個貨叉臺伸貨格內(nèi)取貨,當取貨的動作
45、完成之后,堆垛機控制第一個貨叉臺卸貨。堆垛機然后再回到入口處。這整個操作流程就像是一個單指令運作再加上一小段重新定位運行過程(即堆垛機第二個貨叉平臺裝載和卸載過程),這樣一來,其運作就像一臺堆垛機完成先完成取貨然后再存貨的一個雙任務命令。 因為這種堆垛機有兩個貨叉平臺,所以兩個貨叉的定位控制將是系統(tǒng)的一個很重要的功能。堆垛機用兩個貨叉可以在某個貨架的同一位置完成一個存、取雙任務指令,先在空貨駐臺上取下要出庫的貨物,再移動第二貨叉到指定位置把貨物放在空貨格內(nèi)。然而,貨叉平臺結構的選擇與本文的討論內(nèi)容無關。 為了實現(xiàn)上述操作,堆垛機的第二個貨叉必須在第一個貨叉完成取貨動作之后才能進行定位操作。
46、由于貨叉的定位移動量是較小的,堆垛機采用的是低速爬行方式來實現(xiàn)貨叉微小的定位移動量,在這個過程中所耗費的時間與堆垛機在裝貨卸貨耗費的時間相比一般是微乎其微的。倉庫設計的另外一個特點是第一排貨格和最后一排貨格的兩端要留有位置余量,以便在堆垛機超程時給兩個貨叉平臺留有運動余地。 4 工作效率提高 為了估算正在設計的雙貨叉系統(tǒng)工作量的提高,我們引用Bozer 和 White[1]提出的有關單任務和雙任務指令所需時間理論和Han et al.提出的最近有意義想法價值理論,這些理論家都作了種種設想,他們設想的共同部分就是我們要引用的內(nèi)容,下面就是這些理論的內(nèi)容。 1.倉庫的貨架被考慮成為連續(xù)矩形
47、框架,貨物出/入處被設置在貨格的左下角位置。 2.貨架的長度和寬度以及堆垛機水平和垂直運行的速度應該明確。 3.堆垛機貨叉臺能同時在水平和垂直兩個方向運動,在計算運行時間方面作如下處理,貨叉在水平和垂直方向時進行勻速運動,加速和減速緩沖極限速度,爬行速度用來定位兩個貨叉臺。 4.假設與物流過程相關的裝載貨物和卸載貨物所用的時間為常量,因此,可以把它簡單的加到運行時間中去。 5.堆垛機只能以單指令要求和雙指令要求為基礎,例如,不允許堆垛機在巷道內(nèi)多次啟停。(這個分假設后來應用于新設計的堆垛機完成四重作業(yè)流程。 6.為了符合最短鄰近的啟發(fā)思想, 取貨數(shù)n可用來排列,且在貨格內(nèi)有m個開放的
48、位置。 5 雙貨叉堆垛機系統(tǒng) 新設計的堆垛機有兩個貨叉臺,因此可以對其進行雙貨叉系統(tǒng)的操作:同時搬運兩件貨物并分別把它們放置在指定的位置,在不同位置取兩件貨物并回到出入口,如圖4所示.上述工作流程能通過在四個不同的位置存、取操作來實現(xiàn)。因此,運行時間將由一個單指令任務時間再加上三個運行時間。為了更有效的完成上述四個操作,在完成一個雙指令任務操作中就包含完成了在一個位置存、取操作。這種被稱為四指令任務流程的模擬操作系統(tǒng)能減少運行時間,因而比此前的所提的模擬系統(tǒng)要更能提高效率。四重指令任務流程能在倉庫的任意一位置完成存儲操作,而取貨程序是按照先到先服務的原則處理。即使如此,合理的按排取貨的順
49、序也能顯著的減少四種操作中的運行時間,Han 曾經(jīng)這樣分析以提高單貨臺立體倉庫系統(tǒng)的工作效率。本文的分析也是以他們的研究為基礎的。 6 結論 本文對自動化立體倉庫中的一種雙貨架堆垛機進行了較為詳細的分析,應用這種倉儲系統(tǒng)所帶來的好處表現(xiàn)在以下兩個方面: 1.四種操作運行中與單一貨叉的堆垛機相比,雙貨叉堆垛機可以提高工作效率的范圍是40%到45%。 2.一個雙任務操作中,雙貨叉的設計顯著縮短了運行時間。 雙貨叉系統(tǒng)使提高倉庫的工作效率成為可能。這種設計主要的缺點是要增加堆垛機的額外成本。在決定是否適合于某一特定情況時,對其經(jīng)濟估算通常是必要的。盡管如此,基于立體倉庫工作效率的考慮,雙設
50、計貨叉臺堆垛機系統(tǒng)還是大有前景的。 雙貨架系統(tǒng)的概念也可延伸到其它物流系統(tǒng)中去。因此,在這項工作時有必要對其它倉庫系統(tǒng)(比如基本的倉儲系統(tǒng))進行戰(zhàn)略考慮,相比之下以便于發(fā)現(xiàn)它們在提高工作效率方面的不足這處,本文還提供了一種雙貨叉自動化立體倉庫的分析框架并為其它與之相關的一些研究提供了基礎。 試題【】 1.試題的概念 用于考試的題目,要求按照標準回答。 它是命題者按照一定的考核目的編寫出來的。 2.試題的應用領域 如今試題涉及各個領域,它是考核某種技能水平的標準。 比如,在各行業(yè)的招聘中,有招聘的試題。可以說,只要有考核要求,就會有試題。 試題用的最多的應該
51、還是在教育中,在高考中,有高考試題;在中考中有中考試題;教學中老師想考核學生,也是用試題考核。 3.網(wǎng)絡的試題資源 隨著網(wǎng)絡的發(fā)展,試題不再僅僅是寫在紙上了,網(wǎng)上也有豐富的試題資源,有很對網(wǎng)站都提供了豐富的試題資源,不過最精良的資源往往是收費的。 但是通常在日常中,使用者往往更喜歡于找免費的試題資源網(wǎng)站。 常用的免費試題資源下載可以去教育網(wǎng)址站“千教網(wǎng)”上邊查找,上邊把免費和收費的網(wǎng)站分開了,涵蓋了幼兒,小學,初中,高中,自考,成考,公務員,留學等方面的資源網(wǎng)址。 解考試緊張的食物 牛奶 鈣是天然的神經(jīng)系統(tǒng)穩(wěn)定劑。研究證明,人在受到某種壓力時,通過小便排出體外的鈣
52、會增加。因此,考生要注意選擇含鈣高的牛奶、酸奶等食物,可穩(wěn)定情緒。 香蕉 含有一種特殊物質,能幫助人腦產(chǎn)生5-羥色胺,促使人的心情變得安定、舒暢。香蕉中富含的鉀能使神經(jīng)肌肉興奮性維持常態(tài),使血壓處于正常狀態(tài)。香蕉中含有的鎂具有消除疲勞、緩解緊張的功效。 柑橘 多吃富含維生素C的食物也具有平衡心理壓力的效果。維生素C的主要來源為新鮮的蔬菜和水果,其中柑橘類水果及番茄是維生素C的最佳來源。 小米粥 富含人體所需的氨基酸及其他優(yōu)質蛋白質、各種礦物質、胡蘿卜素等。常喝小米粥可調節(jié)人體內(nèi)分泌,松弛神經(jīng)。 紅茶 有降低機體應激激素分泌水平的功效,每天飲用紅茶,有利于舒緩神經(jīng)
53、。 編輯本段常見的考試 1.升學考試:中國選拔優(yōu)秀人才,向來以考試為準,在升學過程中考試就是必不可少的一部分。常見的升學考試有小升初、中考、高考等,其中高考也是最重要的考試之一。 2.職位/資格考試:同樣在選拔優(yōu)秀員工或工作人員上,也有很多非常重要的考試。常見的有公務員考試、招警考試等等。 3.語言考試:改革開放,中國的留學和移民現(xiàn)象也越來越熱,其中也出現(xiàn)一些相應的考試,留學和技術移民必須通過一定的語言測試,如去英美國家必考的雅思等等 編輯本段科舉考試歷史 概述 中國古代的科舉考試 科舉考試是隋唐到清代的封建王朝分科考選文武官吏及后備人員的制度。唐朝文科的科目很多,每年都舉行。明清兩代文科只設進士一科,考八股文。武科考騎射、舉重等武藝。武則天時設立武舉,即是武狀元. 童生試:也叫“童試”,應試者不分年齡大小都稱童生,合格(學習成績優(yōu)秀的一二等學生)后取得生員(秀才、相公)資格,這樣才能參加科舉考試。 鄉(xiāng)試: 明清兩代每三年在各省省城舉行的一次考試,由秀才參加,考取的叫舉人,取得參加中央一級的會試的資格。第一名叫解元。
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。