購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
機械工程機械工程系系 機械設計制造及自動化專業(yè)機械設計制造及自動化專業(yè)論文答辯論文答辯工業(yè)機械手設計工業(yè)機械手設計液壓原理及傳動設計液壓原理及傳動設計學生:李剛學生:李剛指導老師:丁蘭指導老師:丁蘭英英目錄引言引言第一章第一章機械手設計要求分析機械手設計要求分析 第二章第二章液壓系統(tǒng)設計液壓系統(tǒng)設計 第三章第三章集成塊的設計集成塊的設計 第四章第四章液壓集成塊液壓集成塊CAD技術技術 參考文獻參考文獻引言引言工業(yè)機器人一般指用于機械制造業(yè)中代替人完成具有大批量、高質量要求的工作,如汽車制造、摩托車制造、艦船制造、某些家電產品(電視機、電冰箱、洗衣機)、化工等行業(yè)自動化生產線中的點焊、弧焊、噴漆、切割、電子裝配及物流系統(tǒng)的搬運、包裝、碼垛等作業(yè)第一章第一章機械手設計要求分析機械手設計要求分析 1.設計目的和要求設計目的和要求 上下料用機械手能在不同高度與不連續(xù)的工作臺之間實現(xiàn)機械零件的重復取放,代替人工勞動,減輕了人工勞動強度,提高了自動化水平和勞動生產率,保證了產品和工人的質量與安全。2.機械手簡介與分析機械手簡介與分析 1.坐標形式分析坐標形式分析 上下料用機械手采用圓柱坐標的結構形式,主要的組成部分有:升降機構,回轉機構,手臂伸縮結構等,在這三中機構中采用液壓驅動傳動方式,能保證機械手的整體結構的緊湊性,運動平穩(wěn)以及可以方便的實現(xiàn)無級調速。2.運動分析運動分析 如圖所示,機械手在工作過程中需三種運動,其中手臂的伸縮和立柱的升降為兩種直線運動,而手臂的回轉為圓周運動,所以采用圓柱坐標形式。其特點是,結構簡單,手臂運動范圍大,有較高的定位準確度。3.機械手的工作范圍機械手的工作范圍 機械手在水平方向上的伸縮范圍為至兩個不同高度的工作臺的距離,手臂伸縮總行程為:300-500mm,手臂回轉的運動范圍為:0-240度,立柱升降的垂直方向的距離為兩工作臺的高度差,總行程為:0-200mm 第二章第二章液壓系統(tǒng)設計液壓系統(tǒng)設計 1 1.根據工作要求確定一個工作循環(huán)周期根據工作要求確定一個工作循環(huán)周期的運動過程的運動過程 2.2.據工作循環(huán)過程確定系統(tǒng)工況分析圖據工作循環(huán)過程確定系統(tǒng)工況分析圖 3.3.擬訂液壓系統(tǒng)的工作原理圖擬訂液壓系統(tǒng)的工作原理圖 4.4.根據整個系統(tǒng)的液壓元件需求選擇標根據整個系統(tǒng)的液壓元件需求選擇標準的液壓元件準的液壓元件 5 5 液壓缸尺寸的確定及安全強度的校核液壓缸尺寸的確定及安全強度的校核1.1.確定一個工作循環(huán)周期的運動過程確定一個工作循環(huán)周期的運動過程 1.手臂位于初始位置(1)2.手臂伸長至工作臺(1)3.手指抓取工件4.手臂縮回5.立柱升高至至工作臺6.手臂回轉角度至位置(2)7.手臂伸長并釋放工件8.手臂縮回9.手臂回轉角度,至位置(1)10.立柱下降至工作臺(1)工作行程范圍:角度0-240度手作工作范圍200mm高度工作范圍200mm2.分析運動過程確定系統(tǒng)工況分析圖分析運動過程確定系統(tǒng)工況分析圖3.擬訂液壓系統(tǒng)的工作原理圖擬訂液壓系統(tǒng)的工作原理圖 1.根據整個系統(tǒng)的工作完成步驟,選擇合適的液壓缸。伸縮運動和升降運動 選擇單桿活塞液壓缸,回轉運動選擇擺動液壓缸,保證整個系統(tǒng)能夠達到穩(wěn)定的運動效果。2.液壓回路的選擇液壓回路的選擇 確定液壓執(zhí)行元件以后,根據設備的共組特點和工作要求確定對主要性能起決定性影響的主要回路,機械手液壓系統(tǒng)主要有針對伸縮運動,升降運動和回轉運動的三個主要運動回路。綜合以上的動作,原理以及元件,繪制液壓系統(tǒng)原理圖。下圖為本機械手液壓系統(tǒng)的工作原理圖 2.5液壓缸尺寸的確定及安全強度的校核液壓缸尺寸的確定及安全強度的校核 1.伸縮液壓缸的設計計算2.擺動缸的設計計算 3.升降機構的設計計算第三章第三章 集成塊的設計集成塊的設計 1 1 設計分析設計分析 2 2 根據具體的要求進行設計計算根據具體的要求進行設計計算 3 3 下面為集成塊的設計步驟下面為集成塊的設計步驟 4 4 液壓集成塊的加工工藝液壓集成塊的加工工藝 2 2 根據具體要求進行設計計算根據具體要求進行設計計算 上下料用的機械手液壓系統(tǒng)的集成塊設計系統(tǒng)見集成塊裝配圖,它包括地板塊,升降機構控制集成塊,回轉機構控制集成塊,伸縮機構控制集成塊以及頂蓋等五個集成塊組成。下面針對整個系統(tǒng)中的伸縮缸液壓控制回路集成塊為例子,具體說明整個集成塊的設計計算過程:3.液壓元件的選擇液壓元件的選擇為了能滿足整個循環(huán)的工作要求,則該回路共需四個液壓元件,有相關手冊查得它們的型號和規(guī)格,以及安裝底板在安裝這些元件時候應考慮的油孔的相對位置情況等 3 3 下面為集成塊的設計步驟下面為集成塊的設計步驟 確定通道的孔徑,集成塊上的公用通道,即壓力油孔P,回油孔T,泄露油孔L,以及四個安裝孔,壓力油孔由液壓泵流量決定,本回路流量約為30 L/min 則取壓力油孔的孔徑為12mm,回油孔和泄露油孔也取孔徑為12mm。直接與液壓元件連接的液壓油孔由選定的液壓元件規(guī)格確定,由于所選液壓閥的通徑都為10mm,則統(tǒng)一取孔徑為12mm,方便加工。而孔與孔之間的連接孔(即工藝孔)也取12,并且要求用螺塞在集成塊表面堵死,不允許堵孔用的螺塞對其他的液壓元件和結合面有干涉作用。3.集成塊上液壓元件的布置,把做好的液壓元件樣板在集成塊各個視圖上進行布局,有的液壓元件需要連接板,則樣板以連接板為準。在布局時應該避免電磁換向閥兩端的電磁鐵與其他部分或元件想干涉,液壓元件的布置應以在集成塊上加工的孔最少為最佳。如圖5所示,孔道相通的液壓元件應該盡可能布置在同一水平面上,或在直徑d的范圍內(如圖5 a)否則要鉆中間油孔(如圖5 b,c),不通油孔之間的最小壁厚h必須進行強度校核(如圖5 d)。液壓元件在水平上的孔道若與公共油孔相通,則應盡可能地布置在同一垂直位置或在直徑d的范圍(如圖5 a,b),否則要鉆中間孔道(如圖6 c),集成塊前后與左右連接的孔道應相互垂直,不然也要鉆中間孔道(如圖6 d)。設計專用集成塊時,要注意其高度應該比裝在其上的液壓元件最大橫向尺寸大,以避免上下集成塊上的液壓元件相互干涉,影響集成塊組之間的緊固問題。4.集成塊上液壓元件布置程序集成塊上液壓元件布置程序電磁換向閥布置在集成塊的前面和后面,先布置垂直位置,后布置水平位置,要避免電磁換向閥的固定螺孔與閥口通道、集成塊固定螺孔相通。液壓元件泄漏孔可考慮與回油孔合并。水平位置孔道可分為三層進行布置。根據水平孔道布置的需要,液壓元件可以上下左右移動一段距離,具體可參見圖6。溢流閥的先導閥部分可伸出集成塊外,有的元件如單向閥,可以橫向布置。第四章第四章 液壓集成塊液壓集成塊CADCAD技術技術 液壓集成塊的CAD的研究與開發(fā)已為液壓工程設計提供了有力的支持,但其發(fā)展?jié)摿€沒有充分發(fā)掘。由于液壓集成塊的高附價值,液壓集成塊CAD技術的應用開發(fā)不但能夠滿足個別企業(yè)液壓集成塊的專業(yè)急需,同時也有望走上商品化專業(yè)軟件市場。對液壓集成塊CAD技術的研究開發(fā)提出全面的商品化,工程化要求并采取有效的方法學,技術和工具,將液壓集成塊CAD技術應用軟件推向用戶市場是液壓集成塊CAD領域的重要工作。參考文獻:參考文獻:1工業(yè)機器人 徐元昌編制 中國輕工業(yè)出版社2液壓傳動與控制 賈銘新主編 國防工業(yè)出版社3液壓與氣壓傳動 左健民主編4機器人應用技術 孟繁華編 哈爾濱工業(yè)大學出版社5機器人動力學 趙錫編著 上海交通大學6.機器人學 蔡自興著 清華大學出版社7.機器人和機械手控制系統(tǒng) 劉興良著 新時代出版社8.賈竹青.液壓集成塊設計法分析.1998(1)9.濮鳳根,胡偉民.關于液壓集成塊CAD研究開發(fā)的進一步探討.199710.Solomatine,D.Object-orientation in hydraulic modeling architectures.Journal of computing in civil engineering,1996(4)
畢業(yè)論文開題報告
題 目:
工業(yè)機械手設計
姓 名:
學 院:
工學院
專 業(yè):
班 級:
學 號:
指導教師:
職稱: 教 授
2005年 6 月 8 日
課題名稱:工業(yè)機械手設計
一、課題來源、課題研究的主要內容及國內外現(xiàn)狀綜述
1.課題來源、課題研究的主要內容
工業(yè)機器人一般指用于機械制造業(yè)中代替人完成具有大批量、高質量要求的工作,如汽車制造、摩托車制造、艦船制造、某些家電產品、化工等行業(yè)自動化生產線中的點焊、弧焊、噴漆、切割、電子裝配及物流系統(tǒng)的搬運、包裝、碼垛等作業(yè)的機器人。工業(yè)機器人由操作機(機械本體)、控制器、驅動控制系統(tǒng)和檢測傳感裝置構成,是一種仿人操作、自動控制、可重復編程、能在三維空間完成各種作業(yè)的機電一體化自動化生產設備。特別適合于多品種、變批量的柔性生產。它對穩(wěn)定、提高產品質量,提高生產效率,改善勞動條件和產品的快速更新?lián)Q代起著十分重要的作用。
機器人并不是在簡單意義上代替人工的勞動,而是綜合了人的特長和機器特長的一種擬人的機械裝置,既有人對環(huán)境狀態(tài)的快速反應和分析判斷能力,又有機器可長時間持續(xù)工作、精確度高、抗惡劣環(huán)境的能力,從某種意義上說它也是機器的進化過程產物,它是工業(yè)以及非產業(yè)界的重要生產和服務性設備,也是先進制造技術領域不可缺少的自動化設備。
2. 國內外現(xiàn)狀綜述
近20年來,機器人或機械手技術的應用領域迅速拓寬,尤其是在各種自動化生產線上得到廣泛應用。電氣可編程控制技術與液壓技術相結合,使整個系統(tǒng)自動化程度更高,控制方式更靈活,性能更加可靠;液壓機械手、柔性自動生產線的迅速發(fā)展,對液壓技術提出了更多更高的要求;微電子技術的引入,促進了電-氣比例伺服技術的發(fā)展;現(xiàn)代控制理論的發(fā)展,使液壓技術從開關控制進入閉環(huán)比例伺服控制,控制精度不斷提高;由于液壓脈寬調制技術具有結構簡單、抗污染能力強和成本低廉等特點,國內外都在大力開發(fā)研究。隨著微電子技術、PLC技術、計算機技術、傳感技術和現(xiàn)代控制技術的發(fā)展與應用,液壓技術已成為實現(xiàn)現(xiàn)代傳動與控制的關鍵技術之一。
自上世紀六十年代,機械手被實現(xiàn)為一種產品后,對它的開發(fā)應用也在不斷發(fā)展,最典型的發(fā)展是生產者將此產品大量應用于衛(wèi)生行業(yè)(全自動生化分析儀),從而實現(xiàn)了衛(wèi)生檢驗中急需短時間、大量樣品數(shù)據的要求,但在衛(wèi)生領域的機械手因采用樣品加單一酶試劑顯色法,且采用濾光片結構設計,造成試劑價格昂貴,限制了產品市場的發(fā)展。 隨著技術的進步,機械手的設計已經實破了單一試劑、加熱及濾光片的束縛。比如美國OI公司的產品,可針對單一項目,次序加4種試劑,加熱溫度也提高到 50 ℃ ,檢測器則采用二極管陳列技術,這些進步為新領域的應用提供了強大支持。有專家估計未來10 年,全自動流動分析儀的市場份額中,將有 50 %被全自動化學分析機械手取代。 通過了解上述兩類產品的技術特點我們不難看出,機械手具有微升級試劑消耗,不受模板束縛,分析中不同檢測項目可穿插完成,可完成研發(fā)性波長掃描優(yōu)化檢測條件,用戶可自行設計新的檢測項目,體積小,甚至可做現(xiàn)場快速分析等特點。 由此也不難看出,以前流動分析中不適合的用戶群,如樣品檢測單一種類少而樣品量多的情況,為機械手的應用提供了可能性。對衛(wèi)生行業(yè)的快速分析中,也因新型機械手的設計特點而使取代昂貴的試劑,降低分析成本成為可能。機械手不能完全取代流動分析產品一個重要的理由是:一些特殊樣品處理技術不能在線實現(xiàn),如萃取、高溫蒸餾,需要離線進行,相信隨著技術的進步,這些方面的技術也會提高。
參考文獻:
[1]. 工業(yè)機器人 徐元昌 編制 中國輕工業(yè)出版社 1999.08
[2]. 液壓傳動與控制 賈銘新 主編 國防工業(yè)出版社 2003.01
[3]. 液壓與氣壓傳動 左健民 主編 機械工業(yè)出版社 1999.10
[4]. 機器人應用技術 孟繁華 編 哈爾濱工業(yè)大學出版社 1989.06
[5]. 濮鳳根,胡偉民. 關于液壓集成塊CAD研究開發(fā)的進一步探討. 1997
[6]. 馮毅,田樹軍,李利. 基于計算智能的液壓集成塊優(yōu)化設計.中國機械工程,2003(17)
[7]. 機器人和機械手控制系統(tǒng) (蘇)E.N尤列維奇等著;劉興良等譯 新時代出版社 1985.04
[8]. 機器人基礎知識 劉興良編著 新時代出版社 1986.08
[9]. 濮鳳根,胡偉民. 關于液壓集成塊CAD研究開發(fā)的進一步探討. 機電設備 1997
[10].Solomatine,D. Object-orientation in hydraulic modeling architectures.Journal of computing in civil engineering,1996(4)
二、本課題擬解決的問題
目前液壓機械手被廣泛地應用于各種加工試驗等工作場所,由于現(xiàn)在的科技進步與發(fā)展,工業(yè)機械手逐步追求一種智能化,小型化,進一步體現(xiàn)在液壓系統(tǒng)控制的微縮?,F(xiàn)階段液壓集成塊技術被廣泛用應于液壓系統(tǒng)的控制,以減小液壓系統(tǒng)控制管路連接。
液壓機械手控制設計中液壓集成塊設計是一項關鍵的工作,液壓集成塊是安裝各種液壓元件,并在其內部按照系統(tǒng)控制原理要求實現(xiàn)元件之間油道連通的復雜功能塊。它的應用使液壓系統(tǒng)的結構更加緊湊,安裝和調試也更加方便。在一定尺寸限制的塊體上如何按照系統(tǒng)原理要求,正確合理的設計多個通道,對設計人員來說是一項艱巨的任務,因而單靠手工設計集成塊不僅速度慢,而且難免在設計過程中發(fā)生錯誤,影響工作的正常進行,造成很大的時間與資源的浪費。
本課題擬在利用現(xiàn)在專業(yè)應用軟件開發(fā)技術,方法,工具來促使人們更深入地開展工業(yè)機械手液壓集成系統(tǒng)的開發(fā)與研究。液壓集成系統(tǒng)的CAD的研究與開發(fā)已為液壓控制工程設計提供了有力的支持。由于液壓集成塊的高附價值,液壓集成控制技術的應用開發(fā)不但能夠滿足個別企業(yè)專業(yè)急需,同時也有望走上商品化專業(yè)軟件市場。
三、解決方案及預期效果
在整個的液壓控制系統(tǒng)中液壓集成塊為一個重要的中間控制元件,利用它可以減少很多復雜管路以及控制元件的連接,實現(xiàn)控制系統(tǒng)的集成化。
鑒于現(xiàn)在液壓工業(yè)機械手國內外趨勢的發(fā)展,主要解決機械手液壓控制系統(tǒng)的設計與研究,并利用液壓集成塊CAD應用軟件獲得最優(yōu)的布局布孔方案。實現(xiàn)了液壓集成塊布局孔集成方案的自動優(yōu)化設計。設計合理的液壓原理圖以及選用標準的液壓元件,明確各元件之間的連通關系,實現(xiàn)液壓元件在集成塊體上的布局定位,實時干涉校核下的孔道自動連通,連通方案的目標評價和布局方案的自動調整等步驟。最后形成集成塊的布局布孔最優(yōu)方案。在優(yōu)化設計過程中,需要以下幾項數(shù)據:1.元件的外型尺寸,用于裝配時進行外型干涉校核 2.元件底版孔系數(shù)據,包括元件底版上各油孔,螺紋孔等的坐標位置和孔道大小,以及深度要求和安裝精度要求等 3.元件本身屬性,包括元件裝配的優(yōu)先面,優(yōu)先角度等
利用CAD的三維實體造型功能,可以將液壓集成塊自動設計結果,即集成塊外部元件布局和內部孔道布局的集成方案,在CAD圖形庫中自動生成集成塊的三維結構圖和裝配圖,在CAD的三維瀏覽工具的支持下,可以實現(xiàn)對集成塊內部結構圖和裝配圖的多方位,多角度的觀察,進而對檢驗方案結果及優(yōu)劣程度進行改造。其中,液壓集成塊三維裝配圖生成需要液壓元件圖形庫的支持。
就設計全過程來說,工作從液壓控制系統(tǒng)原理方案分析開始,確定集成范圍和目標要求,構思總體部署方案和確定全部元件規(guī)格及其安裝位置,根據原理要求設計塊體孔系,設計師在塊體設計中要遵循設計規(guī)范與準則,獲得集成塊裝配草圖與零件設計草圖,孔道校驗和技術文件編制。然而集成塊CAD研究開發(fā)的目標在于促使設計師發(fā)揮創(chuàng)造性,即應用開發(fā)應定位于集成塊設計的前端。根據過程改進要求獲得設計過程規(guī)范是過程建模的前提。按照設計及開發(fā)能力以及過程改進的方法學框架,逐步建立行之有效的設計規(guī)范和設計模型。設計師利用軟件高效完成工作的同時,能充分發(fā)揮創(chuàng)造潛力,完成工作的創(chuàng)造性部分。
四、課題進度安排
3月19日~4月1日.畢業(yè)實習階段。
畢業(yè)實習,查閱資料,到多個公司實踐,撰寫實習報告。
4月2日~4月15日.開題階段。
提出總體設計方案及草圖,填寫開題報告。
4月16日~5月23日. 設計初稿階段。
完成總體設計圖、部件圖、零件圖。
5月24日~6月7日. 中期工作階段。
完善設計圖紙,編寫畢業(yè)設計說明書,中期檢查。
6月8日~6月10日.畢業(yè)設計預答辯。
6月11日~6月18日.畢業(yè)設計整改。
圖紙修改、設計說明書修改、定稿,材料復查。
6月19日~6月21日.畢業(yè)設計材料評閱。
6月22日~6月24日.畢業(yè)答辯。
6月25日~6月28日.材料整理裝袋。
五、指導教師意見
年 月 日
六、專業(yè)系意見
年 月 日
七、學院意見
年 月 日
5
液壓集成塊CAD技術的發(fā)展與研究
摘要:本文介紹了液壓集成塊的現(xiàn)階段發(fā)展狀況以及它在集成系統(tǒng)中的作用。在分析液壓集成塊CAD應用開發(fā)進展的基礎上,提出了深入開展液壓集成塊CAD研究開發(fā)的中心任務是完善集成塊設計規(guī)范和過程建模。支持并持續(xù)改進集成塊設計的整個過程,是液壓集成塊CAD研究開發(fā)的目標。過程建模的思想方法將促使企業(yè)建立和改進開發(fā)能力成熟模型,進而提高企業(yè)的整體開發(fā)能力。
關鍵詞: 液壓集成塊;CAD技術; 開發(fā); 研究
The Development and Research of CAD Technic for Hydraulic Manifold Block
Abstract: Summary : This text has introduced the state of development and its role in integrated system of the present stage that the hydraulic pressure integrates one. On the basis of analysing that integrates a progress for CAD application and development in hydraulic pressure, is it launch hydraulic pressure integrate pieces of central task that CAD research and develop to is it integrate pieces of design specification and course modeling to perfect thoroughly to put forward. Support and is it integrate pieces of whole course that design to improve continuously, it is hydraulic pressure that integrate pieces of goal that CAD researches and develops. The modeling way of thinking of the course will impel enterprises to set up and improve the ripe model of development ability, and then improve the whole development ability of enterprises.
Key words: Hydraulic manifold block;CAD technique;Exploiture;Research
前言
在液壓系統(tǒng)設計中,液壓集成塊設計是一項關鍵的工作,液壓集成塊是安裝各種液壓元件,并在其內部按照系統(tǒng)原理要求實現(xiàn)元件之間油道連通的復雜功能塊。它的應用使液壓系統(tǒng)的結構更加緊湊,安裝和調試也更加靈活方便。在一定尺寸限制的塊體上如何按照系統(tǒng)原理要求,正確合理的設計多個通道,對設計人員來說是一項艱巨的任務,因而單靠手工設計集成塊不僅速度慢,而且難免在設計過程中發(fā)生錯誤,影響工作的正常進行,造成很大的時間與資源的浪費。
正文
液壓集成塊作為各式板式閥,插裝閥及其其他附件的承裝載體,因液壓系統(tǒng)組成的非標準性和所承裝閥體及其相互連通關系的多樣性所致,其外部是多種不同格式和規(guī)格的液壓元件在各個方面的緊湊布局,內部為十分密集,復雜的孔系網絡,在液壓集成塊自動優(yōu)化設計功能軟件系統(tǒng)開發(fā)中,一項重要的內容是建立含有足夠信息量的且方便適用的液壓元件數(shù)據庫和圖形庫。對于液壓集成塊而言,安裝在塊上的各種液壓元件相關數(shù)據構成了設計的基礎性信息,如:元件的外型尺寸,底版孔系數(shù)據,以及其他附加信息等,同時由于各個液壓生產廠家生產的液壓元件系列不同,規(guī)格不同,種類繁多,外型尺寸各異,則深入剖析各類液壓元件的屬性及構成規(guī)律,提取對集成塊設計有意義的信息,并按照一定的分類方法與集成塊 CAD技術接軌,深入開展液壓集成塊CAD的研究開發(fā)。
當前液壓集成塊CAD應用開發(fā)受到了國內外液壓界的廣泛重視,專業(yè)應用軟件開發(fā)技術,方法,工具的不斷發(fā)展和成熟,又促使人們更深入地開展液壓集成塊的開發(fā)與研究。液壓集成塊的CAD的研究與開發(fā)已為液壓工程設計提供了有力的支持,但其發(fā)展?jié)摿€沒有充分發(fā)掘。由于液壓集成塊的高附價值,液壓集成塊CAD技術的應用開發(fā)不但能夠滿足個別企業(yè)液壓集成塊的專業(yè)急需,同時也有望走上商品化專業(yè)軟件市場。對液壓集成塊CAD技術的研究開發(fā)提出全面的商品化,工程化要求并采取有效的方法學,技術和工具,將液壓集成塊CAD技術應用軟件推向用戶市場是液壓集成塊CAD領域的重要工作。
液壓集成塊CAD應用軟件將能自動生成與獲得最優(yōu)的布局不孔集成方案。實現(xiàn)了液壓集成塊布局孔集成方案的自動優(yōu)化設計。利用該軟件用戶只需要輸入液壓原理圖所提供的液壓元件及其元件之間的連通關系,則計算機自動完成中間的處理過程,包括液壓元件在集成塊體上的布局定位,實時干涉校核下的孔道自動連通,連通方案的目標評價和布局方案的自動調整等步驟。最后形成集成塊的布局布孔最優(yōu)方案。在優(yōu)化設計過程中,需要以下幾項數(shù)據:1.元件的外型尺寸,用于裝配時進行外型干涉校核 2.元件底版孔系數(shù)據,包括元件底版上各油孔,螺紋孔等的坐標位置和孔道大小,以及深度要求和安裝精度要求等 3.元件本身屬性,包括元件裝配的優(yōu)先面,優(yōu)先角度等
利用CAD的三維實體造型功能,可以將液壓集成塊自動設計結果,即集成塊外部元件布局和內部孔道布局的集成方案,在CAD圖形庫中自動生成集成塊的三維結構圖和裝配圖,在CAD的三維瀏覽工具的支持下,可以實現(xiàn)對集成塊內部結構圖和裝配圖的多方位,多角度的觀察,進而對檢驗方案結果及優(yōu)劣程度進行改造。其中,液壓集成塊三維裝配圖生成需要液壓元件圖形庫的支持。
安裝在液壓集成塊上的液壓元件通常有液壓閥,管接頭以及儀表等附件,多為標準件,并且同一系列同一類型不同型號的元件,其結構基本相似,僅尺寸略有不同。因此液壓元件圖形庫較適合采用驅動法來建立,可以利用MDT提供的表驅動技術生成液壓元件的三維模型,完成元件圖形庫的設計開發(fā)。
MDT(AutoCAD Mechanical Desktop)是Autodesk公司在AutoCAD基礎上開發(fā)的基于特征的參數(shù)化三維實體造型軟件,是融二維繪圖和三維造型于一體的機械設計平臺。它包括參數(shù)花實體特征造型、曲面造型、零部件裝配及干涉檢查。三維與二維雙向關聯(lián)繪圖,是運行于微機上較為典型的機械CAD軟件之一。
針對集成塊CAD技術,當前由上海第704研究所和上海交通大學聯(lián)合開發(fā)的集成塊??桌L圖軟件,已在工程實踐中發(fā)揮作用,有效保證了復雜集成塊的設計質量。雙方在經過多年的集成塊設計及其應用軟件的研究開發(fā),在工程實踐基礎上總結液壓集成塊設計規(guī)范,為集成塊CAD的深入研究開發(fā)創(chuàng)造了有利條件。液壓集成塊??桌L圖軟件定位在集成塊設計中的孔道檢驗和自動繪圖兩個環(huán)節(jié),即經圖形用戶界面基于設計草圖輸入有關設計結果和設計要求,從而建立集成塊體的數(shù)學模型。通過多種方式全面檢查內部孔道幾何關系,并比較驗證預定的連通關系要求,確定塊體設計中存在的問題。借助三維幾何觀察器顯示局部細節(jié)以及直接確定問題所在。從而幫助使用者識別設計錯誤,并采取必要的修正措施修改塊體模型有關數(shù)據。
從實踐中認識到裝業(yè)應用開發(fā)的重心應放在染件的人機界面和軟件質量上。??总浖腔谡_的塊體數(shù)學模型自動生成規(guī)范的圖紙。在??桌L圖軟件中,集成塊設計信息與孔道效驗質量特別是可靠性是該軟件開發(fā)的成敗,同時也影響工作效率。因此,就現(xiàn)階段該軟件使用狀況而言仍需要進一步的完善與強化。
就液壓集成塊CAD研究開發(fā)的工程化和商業(yè)化來說,盡管孔道繪圖部分已經有經驗基礎,但這仍不夠。??桌L圖一度是集成塊設計的首要問題,軟件應該保證一個完整而正確的集成塊設計過程,在明確給定設計結果表達形式和正確性的判斷依據的同時,集成塊設計規(guī)范更應強調有效設計集成塊的過程規(guī)則,強調集成塊設計過程的規(guī)范性。
在軟件工程中,方法學是指導應用開發(fā)的一種有效手段,它強調從軟件過程的全局框架出發(fā),把握應用開發(fā)項目的過程,隨著軟件應用不斷進入過程專業(yè)領域,方法學也隨之滲透到各種硬產品及其過程的建模。
目前,在液壓集成塊設計應用開發(fā)中仍拘泥于產品的設計結果信息建模,而在孔道校驗繪圖軟件中,集成塊的設計信息轉化為數(shù)學模型記錄到相關描述文件,據此得到集成塊的三維幾何模型,并生成二維圖紙作為設計結果,此外對設計過程建模并無涉足。現(xiàn)在關于集成塊CAD的研究開發(fā),不能停留于結果信息建模,而要面向整個設計過程的建模。為此,需要強調完善集成塊的設計規(guī)范,特別是其設計過程規(guī)范,不斷完善集成塊設計規(guī)范和過程建模對液壓集成塊CAD研究開發(fā)的深入是當務之急。
就設計全過程來說,設計師的工作從液壓控制系統(tǒng)原理方案分析開始,確定集成范圍和目標要求,構思總體部署方案和確定全部元件規(guī)格及其安裝位置,根據原理要求設計塊體孔系,設計師在塊體設計中要遵循設計規(guī)范與準則,獲得集成塊裝配草圖與零件設計草圖,孔道校驗和技術文件編制。然而集成塊CAD研究開發(fā)的目標在于促使設計師發(fā)揮創(chuàng)造性,即應用開發(fā)應定位于集成塊設計的前端。根據過程改進要求獲得設計過程規(guī)范是過程建模的前提。按照設計及開發(fā)能力以及過程改進的方法學框架,逐步建立行之有效的設計規(guī)范和設計模型。設計師利用軟件高效完成工作的同時,能充分發(fā)揮創(chuàng)造潛力,完成工作的創(chuàng)造性部分,即為集成塊CAD研究開發(fā)的最高目標。明確這一目標,液壓集成塊CAD研究開發(fā)任務也就明確了。
液壓集成塊CAD研究開發(fā)必須著眼于全局與長遠,并著手于近期急需及條件允許的有限目標范圍來實施。過程建模將成為集成塊CAD研究的關鍵;過程重組,再工程的方法學框架明確了液壓集成塊CAD研究開發(fā)的方向和中心內容。
參考文獻:
[1].濮鳳根,胡偉民. 關于液壓集成塊CAD研究開發(fā)的進一步探討. 1997
[2].濮鳳根,胡偉民. 集成塊CAD研究和塊體??桌L圖軟件開發(fā). 1997(2)
[3].王益群,尹紅霞. 液壓集成塊的研究與開發(fā).2001(1)
[4].賈竹青. 液壓集成塊設計法分析.1998(1)
[5].張永利,高艷明,代寶江,馮毅,田樹軍. 面向液壓集成塊設計的液壓元件數(shù)據庫和圖形庫.2004.
[6].馮毅,田樹軍,李利. 基于計算智能的液壓集成塊優(yōu)化設計.中國機械工程,2003(17)
[7].張海平,鐘廷修.插裝閥體復雜孔系的CAD.機床與液壓,1987(1)
[8].竹仁榮. 液壓集成塊的計算機輔助設計. 機床與液壓,1988(2)
[9].王琦等. 液壓閥塊三維圖形處理技術. CAD/CAM,1996.3
[10].Solomatine,D. Object-orientation in hydraulic modeling architectures.Journal of computing in civil engineering,1996(4)
3
附件1
基于路徑幾何約束的高效機械手控制算法
Kang G. Shin and Neil D. McKay
Department of Electrical and Computer Engineering
The University of Michigan
Ann Arbor, Michigan 48109
摘要:傳統(tǒng)上,機械手控制運算法則被區(qū)分為兩級,即路徑規(guī)劃和路徑跟蹤(或路徑控制)。這種劃分方法已經被主要地應用于減輕復雜連結的機械手動力學。不幸的是,這種簡單的劃分方法是以犧牲機械手的工作效率為代價的。
為了改善這種低效率的情況,本文認為要使機械手在最短時間內沿著一條指定的幾何路徑移動受到輸入扭矩/扭力的限制。我們首先采用幾何學路徑約束引入避免碰撞和操作需求的變量函數(shù)來描述機械手動力要求,然后將輸入扭矩/扭力的限制參數(shù)轉變成這些變量。最后最短時間的求解就可用相平面技術進行推導運算求解。
1、前言
在過去的幾年人們主要關注于工業(yè)自動化技術,尤其是使用通用機器人技術。由于工業(yè)機器人的目的是為了提高生產力,如何使每1美元的機器人控制投入獲得盡可能多的效益成為越來越突出的問題。通常固定成本在生產項目成本中占主導地位,所以人們總希望在給定的時間中生產盡可能多的產品。
有多種算法可用于最短時間或接近最短時間機械手控制運算。這些算法通常劃分為兩個層次。第一個層次是所謂的路徑規(guī)劃,第二個層次是所謂的路徑跟蹤或路徑控制。通常路徑控制的定義是企圖實現(xiàn)讓機器人的實際位置和速度匹配理想的位置和速度。這種控制用控制器來實現(xiàn)??刂破鹘邮丈弦淮斡嬎愕睦硐胛恢弥蹬c速度值進行路徑位置描述,然后通過路徑跟蹤系統(tǒng)跟蹤機械手實際位置和速度得到運動偏差。
這樣分開控制方案是基于機械手控制程序,如果把控制作為一個整體考慮將會非常復雜,由于幾乎最簡單的機械手的動力學之后是高度地非線性甚至更復雜。把控制分為兩部分來分別處理使得整個控制過程變得簡單。路徑追蹤通常是一個線性的控制算法,機械手動力學的非線性在這一個水平時常不被考慮,如此的追蹤控制通常能得到需要的軌道并使機械手運動與實際要求保持非常接近。使得精密加工得以實現(xiàn),例如解析運動速度控制(參考文獻[1] ) ,突然的加速度控制(參考文獻[2] ), 及斷續(xù)速度變化控制(參考文獻[3]-[5] )。
不幸的是,單純地劃分為路徑規(guī)劃和路徑追蹤是以犧牲效率為代價的。效率低下的根源是路徑規(guī)劃,為了提高機械手的效率,路徑規(guī)劃時必須了解該機器人的動態(tài)特性,以及準確的動態(tài)模型。然而,規(guī)劃運算法則的大部份的路徑計算只與數(shù)據計算有關,有關機械手的動力學計算非常少。通常假定機械手的速度和加速度為恒定或按一定規(guī)律變化的(參考文獻[6,7]),并具有一定的區(qū)域邊界約束。事實上,這些約束因位置,負載大小,甚至隨有效載荷面積而改變。因此為了使邊界約束為有效的恒定值,速度面積法的邊界取值必須是速度和加速度的整體最低值;換句話說,對于最壞情況的限制必須有效。由于機械手關節(jié)處的轉動慣量加速度有限制,可能被三個或更多的條件所約束,這些多出的約束造成機械手的效率低下。
為了提高效率,本文提出了一種依據幾何路徑和輸入扭矩/扭力上的最短時間機械手路徑控制解決方案,方案以路徑運算法則的方式加入機械手動力學運算。
路徑規(guī)劃輸出真實的最短時間,作為其它可被測量的路徑規(guī)劃的測量標準。
注意,本文提到的問題和解決辦法與參考文獻 [8,9] 中的接近最短時間控制理論不同。
本文分為五個部分分別論述,第二部分描述了使機械手輸入扭矩的動態(tài)約束方程更易于處理和控制的方法;第三部分考慮公式化-時間控制的細節(jié)問題;第四部分用狀態(tài)-平面的技術求解最優(yōu)解;第五部分是本文亮點,推導產生最佳的運動軌跡的運算法則;最后部分是該方法則使用意義討論。
2、機器人動力學與約束
在進行最短時間控制問題研究前,先考慮對系統(tǒng)的行為進行控制,即機器人的手臂動力學模型。有多種方法獲得的機器人臂的動力學方程,即方程中有關位置處的綜合力和扭矩,速度扭矩和加速度。最常使用的兩種方法是拉格朗日和牛頓、歐拉公式。牛頓、歐拉公式雖然計算效率高,但卻很難用于控制問題的遞推計算。拉格朗日雖然計算效率不高,但確實產生一組非常適用于機械手控制問題的微分方程式。在這里動力方程僅用于獲得分析結果,我們使用拉格朗日的方法得出以下機械手動力學方程(參考文獻[12,13])。
qi=vi (1a)
ui=Jijqvj+Rijvj+Cijkqvjvk+Giq (1b)
式中
qi=ith 廣義坐標
vi=ith 廣義速度
ui=ith 廣義力
Jij= 慣性矩陣
Gi = 在 ith 加上重力的力
Cijk= 科氏陣列
Rij= 粘性摩擦矩陣
愛因斯坦求和約束的使用使所有指數(shù)從1到n包含在n自由度機器人中。
慣性矩陣Jij的比例常數(shù)是施加于ith的總的扭矩/扭力與Jij上的總加速度??评飱W利數(shù)列描述了結合 j 和 k 的速度進入Cijk的力。粘性摩擦矩陣R給出由于速度 j 產生的 i 而受到的摩擦力。注意這個矩陣為對角矩陣,所有輸入數(shù)值無負值。
機器人的手臂運動當然不會完全不受約束。事實上,在關節(jié)處機器人手臂必須限制在一個固定的空間運動,且運動軌跡為給定的參數(shù)化曲線。曲線被由參數(shù) λ 的n個函數(shù)集決定,所以我們有
qi=fiλ , 0≤λ≤λmax (2)
其中λ為理想軌跡的一個參數(shù),當λ從 0 到λmax變化時坐標 qi 也連續(xù)地變化且路徑不重復,即λ0=0 ,λtf=λmax .
應當指出,在實際空間的運動軌跡是建立在笛卡爾坐標上。一般很難把曲線從笛卡爾坐標完全轉換到機械臂關節(jié)空間坐標中,相對地執(zhí)行單個點的轉換卻很容易。在笛卡爾的路徑上拾足夠多的點進行坐標變換,利用插值法技術 (例如 三次樣條函數(shù))獲得機械臂關節(jié)空間的一個相似的軌跡。(見[10]為一個例子)
回到之前的問題,我們用時間來區(qū)分參數(shù)化的qi 得到
其中μ =λ 運動方程沿著曲線(Le.幾何學的路徑)變成
注意,如果λ表示沿著路徑的弧長,那么μ和μ分別表示沿著路徑的速度和加速度。
基于這種參數(shù)化有兩個狀態(tài)變量,即λ和μ,但有(n + 1)個方程。選擇方程λ=μ和剩余方程序之一為狀態(tài)方程,其他方程作為輸入 μ 的約束。將ith乘以dfi(λ)dλ 就可以從給出的n個方程中得到一個狀態(tài)方程
這個公式有個明顯的優(yōu)點,在約束函數(shù)導出的向量中參數(shù)μ是二次的,當一階導數(shù)存在時曲線可以進行參數(shù)化,且慣性矩正定,整個的方程能被正的、非零的參數(shù)μ分開,由λ和μ得到μ的一個解?,F(xiàn)在得到二個狀態(tài)方程,而最初的n個方程則由輸入和 μ 約束(關于這方面將在后面討論)。
通過變換,狀態(tài)方程變?yōu)?
現(xiàn)在考慮由|ui|≤umaxi和公式(4a)限制的約束,動態(tài)方程(4a)可以寫成這樣的形式:ui=gi(λ)u+hi(λ,μ). 對于一個給定的狀態(tài),也就是給定的 h 和,u,這是一個參數(shù)p的一組線性參數(shù)方程,約束存在于輸入變化區(qū)間及因輸入變化形成的約束矩陣中。因此把矩陣約束在u上,通過方程參數(shù)使輸入扭矩/扭力變化的所有位置、速度在路徑上彼此限制,給出初始的(λ,μ)及u的大小,如果知道機械手關節(jié)處的輸入扭矩、扭力這樣就能用數(shù)的處理來代替n個矢量的處理進而得到一系列的約束(路徑狀態(tài)方程)。
因為性能完全由u決定,我們用-umaxi≤ui≤+umaxi于是有:
簡化:
于是得到:
注意:前面的方程都是λ的函數(shù),為了簡化計算,功能的依賴性在下面的計算不再指出。
給出的控制不等式:
另一種格式:
LBi≤u≤UBi,這些參數(shù)由n決定,u滿足:maxLBi≤u≤minUBi 或者
GLB(λ,μ)≤u≤LUB(λ,μ) (7e)
路徑計劃要呈現(xiàn)的運算法則與之前依照慣例得到方程的不同,可知參數(shù)λ 是笛卡爾的空間的弧長,μ是速度,μ是幾何加速度。傳統(tǒng)路徑規(guī)劃把加速度劃分為幾個常數(shù)間隔,于是:
GLB(λ,μ)≤umin≤u≤umax≤LUB(λ,μ)
式中umin 和 umax是常數(shù)。傳統(tǒng)方法把加速度進行了過多的約束,使速度也有過多的約束。
3、最佳控制問題的公式化
現(xiàn)在我們得到根據幾何路徑和輸入系統(tǒng)規(guī)定參數(shù)的機械手動力方程,就可以分析實際控制問題了。機械手控制的目的是以最小的輸入得到最大的動力輸出,這可以用最佳控制語言來描述,常用的方法使龐特里亞金最大值原理[11]。最大值問題即點的連接問題,除了一些簡單的點不能使用閉環(huán)控制,而且很難以數(shù)字的方式解決。我們使用最大值原理獲得加工質量而不僅僅是獲得方程的解,這個解將用于之后的最小時間求解。
考慮實際情況,最低成本即最短加工時間,就是求機械手運動最大速度,可以表示為:
C=0tf l ? dt (8)
這里tf由電子激光器決定,價值函數(shù)C必須服從下面給出的3個約束:機械手的動力微分方程約束(即式(6a),(6b));輸入量要求,關節(jié)驅動器輸入扭矩允許范圍要求(即|ui|≤umaxi);第三個參數(shù)是空間參數(shù)設置,機械手運動到達指定工位不能與如何物體相碰。假定理想的幾何方程已經把最小時間控制參數(shù)化,就像之前希望的(即等式(3)),但最初的點為λ=0,結束點為λ=λmax且dfidλ存在,這樣保證(6a),(6b)存在,同時當λ從0到λmax方程是單調的。把這些代入動力方程,我們得到如下的最短時間方程(簡稱MTPP)。
MTPP:求出x0=λ0,μ0和ui0 通過將式(8)代入(6a),(6b), |ui|≤umaxi ,及邊界條件
μ0=μ0 , μtf=μf (9a)
λ0=0 , λtf=λmax (9b)
3.1、最大原則的應用
為了使0≤λ≤λmax需要增加一個第三個狀態(tài)方程,第三狀態(tài)v,并要求:
v=λ2l-λ+λmax-λ2lλ-λmax (10)
其中:lx=1 (x≥0) 0 (x<0)
v≥0要求邊界約束v0=vtf=0這樣v無限接近0,當λ在0≤λ≤λmax中間隔取值使v無限接近0。
在對狀態(tài)方程進行變化前,先定義函數(shù):
這樣就可以簡化公式,得到:
區(qū)間M表示機械手功能的二次形式,如果把參數(shù)qi加入到動能方程,得到K=Mμ2/2 ;Q表示科里奧利的組成和沿著路勁加上參數(shù)化的地心引力;區(qū)間R表示摩擦力,S給出沿著路勁的地心引力,U表示輸入重力區(qū)間。
之前的MTPP可以這樣變化
將(8)代入(11a),(11b),(11c),(7d),(9a),(9b)求y0=λ0,μ0,v0和U0的極小值,通過MTPP變換哈米爾頓函數(shù)變?yōu)椋?
或使用前面的替換得到哈米爾頓函數(shù)
對μ求導,
對λ求導,
最后對v求導,
應用最大值原理,我們需求出H在(12b)中的最小值,聯(lián)合各式(11a),(11b),(11c),(9a)及(7b),且H必須滿足邊界條件。
這里y是矢量(λ,μ,v)的狀態(tài)向量,我們得到一個簡單的輸入區(qū)間
在式(14)中知道H不明確依賴t,也可以看作 是由約束(9)和vtf=0得到。
注:哈米爾頓函數(shù)(12b)在U上線性,且由于ui和dfidλ在[0,λmax]有界使得U有界,這就要求U的最優(yōu)解必須滿足繼電氣控制邏輯,
在最優(yōu)軌跡上任意點的式(12b)中U的解是U的最大或最小值,通過對ui求導得到U的極值,關于ui的等式約束為ui=gi(λ)μ+ hi (λ,μ),得到
由于U的繼電器控制和給定的參數(shù)(λ,μ)U的大小線性地跟隨μ,μ也必須滿足繼電氣控制邏輯。因此μ等于GLB(λ,μ)或LUB(λ,μ)。再考慮三維空間,μ作用于不均等加工時輸入等式約束線上一點,如果 i-th 的聯(lián)合輸入在約束的一邊慢慢趨近于最大值,將推使機械手向正方向推動。
無論輸入的系數(shù)是否為零以上的推論都成立,即p2在(13a)中不為0。如果p2只在孤立的點處為0,則得到各處的最佳控制。另一方面,如果p2在某些區(qū)間內為0,我們有下列的定理。
定理1:如果p2在區(qū)間[t1,t2] (t1
S0>Umin(0) 則p2(0)<0,p2(tf)>0 ;
證明:已知0≤λ≤λmax則當t=tf有μ≤0,又μtf=0,則當tλmax。但在tf處μtf=M-1U-S<0,又M>0于是U-S<0,在時間tf時H的值為0,則
如果p2(tf)≤0,那么Htf>0,矛盾,故有p2(tf)>0;
確定p2(0)的符號及μ(0)的大小,同理可得μ0>0 ,則U-S>0,使用繼電器控制于是有U=Umax否則 U=Umin且Umin-S<0,但如果U=Umax則p2<0,于是p2(0)<0.
這些理論的一個重要原則是開關點個數(shù)為奇數(shù),如果開關點個數(shù)為偶數(shù),p2(tf)的符號將和p2(0)的符號相同,則sinp2tf=(-1)msin( p20)其中m為符號變化次數(shù)。
4、相平面解釋
在相位平面中審查系統(tǒng)行為,相位平面軌跡的方程由方程(11 b )及(11 a)獲得
有趣的是整個時間T從開始到結束可以寫為
然后將得到給定的整體最小參數(shù),這就希望μ越大越好。
參數(shù)μ有兩個影響因數(shù):運動軌跡的斜率和μ值的大小。用μ除以μ得到dμdλ=μμ ;為了得到μ就必須考慮μ的范圍,通過λ和μ的特征值,我們有LUB(λ,μ)< GLB(λ,μ), μ不存在允許值。對于λ的每個值,對應一個由不等式UBi(λ,μ)- LBi (λ,μ)≥0決定的μ值。對于所有的i,j不等式UBi(λ,μ)- LBi (λ,μ)≥0都成立。不等式決定的區(qū)間重合處相平面的軌跡不能丟失,這一區(qū)域將會作為i和j不等式最大、最小相位檢測區(qū),即
對不等式進行變化
或
除以Mi?Mj
左邊是關于μ的二次方程,如果對于所有的i,Si≤umaxi成立,則μ=0時上面的不等式成立,就能從二次方式中得到μ的邊界值。
引入簡化方程:
不要把Cij和C或Cijk弄混了,于是不等式簡化為:
Aijμ2+Bijμ+Cij+Dij≥0 (17b)
注:由定義Aij=-Aji,Bij=-Bji,Cij=-Cji,Dij=-Dji,對于所有的i和j能被互相交換、對稱或者系數(shù)的反對稱,得到不等式
-Aijμ2-Bijμ+Cij-Dij≥0 (17c)
當i≠j時,有n(n-1)/2對方程,n為機械手自由度數(shù)。
5、最佳軌跡確定
為了說明我們先找出一個無摩擦機械手最優(yōu)軌跡的運算法則,運算法則包含普通情況,在零磨擦情況,我們有n(n -1)/2 個關于μ的解,每一個解都是關于μ=0對稱的。在相平面內沒有需要避開的孤島,唯一的限制是 μ由一對連續(xù)的曲線軌跡分段連續(xù)導出。最佳的軌跡能構建在叫做構建無摩擦最優(yōu)軌跡運算法則(簡稱ACOTNF)。
第一步:從λ=0,μ=μ0構建具有最大加速度值的軌跡,延長這一曲線直到它在相平面內穿越過可行域或越過λ=λmax,注意“離開可行域 " 暗示如果軌道的一部份碰巧與可行域接口的一個斷面重合,那么軌跡應該沿著接口被延長,直到碰觸到可行域的邊緣,否則軌跡將不連續(xù)。
第二步:從λ=λmax,μ=μf 轉折點建立第二個曲線軌跡,它是一個減速曲線。這一個曲線應該被延長,直到它離開可行域或越過λ=0。
第三步:這兩個曲線交點即轉折點,從λ=0到轉折點的第一條曲線和從轉折點到λ=λmax的第二條曲線組成運動的最佳軌跡。運算法則到此次結束。
第四步:如果兩條曲線在區(qū)域內不相交,那么它們一定離開可行域,稱加速度離開可行域的點為λ1,這是可行域邊界曲線上的一個點。如果邊界曲線由μ=g(λ)給出,從λ1處沿著曲線搜索,直到找到點使 dμdλ=dgdλ 。這個點作為下一個轉換點,記為λd。
第五步:從λd向后建立一個減速曲線,直到它與加速曲線相交,這樣得到另一個轉折點。
第六步:從λd建立一個加速曲線,延長曲線直到它與減速曲線相交或者離開可行域。如果它與減速曲線相交,那么得到另一個轉折點。如果曲線離開可行域,那么重新計算第四步。
這個運算法則依次交替加速減速計算給出最佳的運動軌跡,在討論軌道的最優(yōu)性之前,必須保證ACOTNF 的所有階段是可行的而且 ACOTNF 會結束。
回到最初的問題,步驟1、2、3、5、6明確可行,但是第4步要求找到函數(shù)的0點。在給定的狀態(tài)之下,函數(shù)至少存在一個零點嗎?回答是的,可由下證明:
注意,在λ=λ1處 ,曲線軌跡從可行域溢出。
同樣地,在點λ=λ2 處減速曲線在可行域外經過,軌跡一定穿過內部。如果在這些點處可行域的邊界曲線的斜率連續(xù),那么我們有
g(λ)是可行域邊界方程,dμdλ=dg(λ)dλ的值必須在λ1和λ2之間變化。如果 g(λ )在這一范圍內連續(xù),那么至少存在一個零點。然而, g( λ )只是大體上分段地可見,所以可能導出不連續(xù)的點,這種情況有可能「零點不存在」,事實上零點總是存在的,我們通過下列的定理證明。
定理3a:左導數(shù)使?λ=dμdλ-dg(λ)dλ,如果?λ1>0且?λ2<0,則?λ在區(qū)間[λ1,λ2]至少存在一個零點。
證明:如果g( λ )的微分在區(qū)間[λ1,λ2]連續(xù),那么一定存在一個零點。如果g( λ )不連續(xù),假設不存在零點,則在g( λ )溢出區(qū)間存在一個或更多的點,符號變化發(fā)生于這一個或更多的這些點。
如果不是這樣,那么在g( λ )存在一個符號變化的點使g( λ )微分連續(xù),而且因此會有一個零點。兩個限制參數(shù)記為g1,g2;g1作用于λ<λd,g2作用于λ>λd,由limλ>0>limφλ有
對于ε>0我們有代入約束,由g( λ )=min gi( λ )得g1 λd+ε λdi的約束解,和假設矛盾。這樣至少存在一個點使?λ為零。這一個定理的圖解意義在圖 7 說明。從圖中看出, g( λ )一定超出區(qū)域,且?λ是分段連續(xù)的,曲線向上跳躍。證明完畢。
為了要證明ACOTNF 結束,我們對函數(shù)fi(λ) 進行一些假設 ,假設fi可分段求解且由有限個不含實際價值的數(shù)組成。非正式地,因為慣性矩陣,科里奧利數(shù)列,重力加速度等是全局解析函數(shù),而且自從路徑被限制之后是分段求解的,我們已經處理的所有函數(shù)也是分段求解的,函數(shù)?λ也是分段求解的,于是將會因此在每個區(qū)域中產生一個零點或有限個零點。如果?λ間隔地為0,軌跡將沿著邊界停止在間隔結束的地方,相同的零間隔不會引起問題。只有間隔的最右面點可能是一個交換點,因此只有如此有限的間隔會引起ACOTNF 有限的反復。如此收斂被保證,因此有限數(shù)目的解域我們有下列的定理:
定理3b:如果函數(shù)fi有有限個實際價值解,那么函數(shù)?λ存在一定數(shù)量的間隔結束于區(qū)域外的零。
證明:慣性矩陣,科里奧利陣列,重力加速度在 qi 中分段解,fiλ在λ處的解等等作為λ函數(shù)(就像公式(4a)和(4b))的分段解或有限的單解。公式(7b)中的M,Q,R,S也是單個的解。一個在有限區(qū)間內沒有奇點的實際價值的解析函數(shù),一定存在有限個零點或同一零點,工程量M必須在區(qū)間內為零。如果假設
我們可以得到所有的Mi零點。如果其中一個Mi不為零,就不存在邊界曲線,就沒有零點。只要有兩個或更多不為零的點,就可得到邊界曲線。坐標i,j代入式(17b)(用=代替≥)得到曲線,式(17b)中系數(shù)A,B,C,D排除在Mi中的零之外,由于Mi存在零點,考慮用Mi中的零點進行區(qū)間分割。在每個小區(qū)間內,只有一個(17b)方程有效。在區(qū)間內μ是λ的一個解,邊界曲線g( λ )是特解,?λ也是特解且在每個區(qū)間內存在一個或數(shù)個零點。由于?λ在區(qū)間內存在一個或數(shù)個零點,因此區(qū)間個數(shù)是有限的,且結束于區(qū)域外的零。證明完畢。
定理4:由ACOTNF產生的任何軌跡在最短時間控制上是最優(yōu)的。
證明:該定理的證明是直接證明。假設一個軌跡比由ACOTNF算法產生的軌跡有更小的運動時間。由等式(8)可知,必然存在λ使新軌跡上的點(λ,μ’)高于ACOTNF軌跡上的點(λ,μ),即μ’>μ。否則,就不存在一個運動時間更短的軌跡。我們根據最大原則分析可知解不唯一,即存在數(shù)條最大加減速曲線,所以我們只能應用那些不確定的軌跡?,F(xiàn)在有四種可能,(λ,μ’)可能位于ACOTNF軌跡初始的加速段,也可能位于最后的減速段,也有可能位于其他的加速或減速軌跡上。在第一種情況下,新軌跡的初始值必須大于ACOTNF的初始值。否則,新的軌跡必須在某些點上具有比ACOTNF更大的加速度,而這是不可能的,因為ACOTNF軌跡擁有可允許的最大加速度。新軌跡因此就可能達到合適的臨界條件。第二種情況與之類似。因為(λ,μ’)點在ACOTNF軌跡上,新軌跡必須比擁有最大的減速度的ACOTNF軌跡減速更快才能達到相同的臨界條件。這也是不可能的,因為ACOTNF使用最大的減速度。在第三種情況下,(λ,μ’)在其他的加速軌跡上,在這種情況下,通向(λ,μ’)點的軌跡必須移出可行域的邊界。否則,這些軌跡必須通過ACOTNF軌跡的加速階段,因為它們通過邊界上的一個點。新軌跡在該相交點的加速度將大于ACOTNF的軌跡,同樣,這也是不可能的。最后一種情況與前者類似。從(λ,μ’)出發(fā)的加速或者減速軌跡必須要么與可行域的邊界相交,要么比ACOTNF減速軌跡減速快,因此,無解。證明完畢。
這種產生最優(yōu)軌跡的方法可以在相位平面內任何有可行域的情況下工作,而不只是無摩擦的情況。基本思想是無限接近可行域的邊緣而不超出它。因此軌跡僅僅是沒有接觸到非可行域。在實際中這當然會很危險,因為控制系統(tǒng)輸入和測試系統(tǒng)參數(shù)的小錯誤都將很可能使機器人偏離預定的軌跡。然而從理論上說,這個軌跡是最節(jié)約時間的。
我們現(xiàn)在考慮一般的情況,即摩擦力足以使相位平面產生孤島。在這種情況下,該算法必須用一種超微不同的形式來展現(xiàn)。因為存在數(shù)條邊界曲線而不是一個,不可能像ACOTNF中做的那樣只研究零點的一個函數(shù)。因此我們不再在算法過程中尋找零點,而是一次性的全找出來。然后建立沒有邊界的軌跡,不管這些邊界是可行域的邊緣還是孤島的邊緣。合適的軌跡可以通過搜索結果曲線圖找到——一直選擇盡可能高的軌跡,有必要的話回溯。更正式的,最優(yōu)軌跡建立算法是:
第一步:建立初始的加速軌跡。(與ACOTNF相同)
第二步:建立最終的減速軌跡。(與ACOTNF相同)
第三步:計算可行域邊線和所有的孤島邊線的函數(shù)?(λ)。在每一個零點,建立一個以零點為轉換點的軌跡,就像ACOTNF的第五步和第六步。轉換方向(加速到減速或者反過來)應該以不使軌跡離開可行域為準來選擇。延長每條軌跡,使它或者離開可行域或者通過λmax.
第四步:找到軌跡的所有交點。這是潛在的轉換點。
第五步:從λ=0,μ=μC穿過網格,這些網格是由從起始點到終點的最高的軌跡形成的。這在下面的網格穿越算法中有介紹。
穿越有上面的第三步和第四步產生的軌跡形成的網格是對曲線圖的一個搜索,目的是要找到最終的減速軌跡。如果設想一個人沿著這些軌跡搜索這些網格,那么如果這可能的話他就會一直左轉。如果一個轉向引向了死角,那么就有必要回溯,然后就向右轉了。整個過程是遞歸的,就像瀏覽樹狀圖的過程一樣。
算法包含兩個過程,一個是搜索加速曲線,另一個搜索減速曲線。算法是:
加速搜索:在當前的(加速)軌跡上,找到最后一個轉換點。在這一點,當前的軌跡到達一個減速軌跡。如果那條曲線是最終的減速軌跡,那么現(xiàn)在考慮的轉換點就是最終的最優(yōu)軌跡的一個轉換點。否則,從當前的轉換點開始進行減速搜索。如果減速搜索成功,那么當前的點就是最優(yōu)軌跡的一個轉換點。否則,沿當前的加速曲線回到前一個轉換點,重復這個過程。
減速搜索:在當前的(減速)軌跡,找到第一個轉換點。從該點開始應用加速搜索。如果成功,那么當前的點就是一個最優(yōu)軌跡的轉換點,則前移至下一個轉換點并重復這個過程。
這兩個算法一直是首先尋找速度最高的曲線,因為加速搜索總是從加速曲線的末端開始,而減速搜索總是從減速曲線的開端開始。因此算法找到(如果有可能)速度最快的軌跡,因此搜索時間最短。
這個算法的最優(yōu)性和一致性的證明實質上與ACOTNF是一樣的,這里不再重復。注意在ACOTNF的一致性證明中,在零摩擦情況下只存在一條邊界曲線的事實沒有用到;因此同樣的證明也適用于高摩擦條件下。
6.討論和總結
在這篇文章里,我們展示了一種獲得在提供理想的幾何軌跡和輸入扭轉約束力的條件下機械手運動最小時間控制軌跡的方法。
就像前面提出的,最優(yōu)軌跡可能接觸到可行域的邊界,產生相當危險的情況。但是,如果在計算中使用略微保守的扭轉約束值,那么實際的可行域就會略微大于計算可行域,留出失誤的空間。
在高摩擦和低摩擦情況下的算法都已經展示了。在這兩種情況下,算法產生“僅僅丟失”非可行域的軌跡,不管丟失的非可行域部分是一個孤島還是有較高的速度限制形成的域。
假設機器人的輸入轉矩被約束,我們得到一個測試機器人沿給定的空間路徑運動的最小時間開環(huán)控制的算法。但是,對不同的輸入參數(shù)也應該可能獲得解。因為該算法產生真正的最小時間解,而不是一個近似值,所以該算法的結果能夠為其他的路徑設計算法提供一個絕對的測量參考。
參考文獻
[1] D. E. Whitney, "Resolved motion rate control for manipulators and human prostheses", IEEE Trans on Man-Manchine Systems, vol. MMS-10, pp. 47-53, June 1969.
[2] J. Y. S Luh, M. W. Walker, and R. P. C. Paul, "Resolved acceleration control of mechanical manipulators", IEEE Trans on Automatic Control, vol. AC-25, no. 3, pp. 468-474, June 1980.
[3] S. Dubowsky and D. T. DesForges, 'The application of model-referenced adaptive control to robot manipulators",ASME J DSUC, vol. 101, pp. 193-200, September 1979.
[4] A.J. Koivo, and T. -H. Guo, "Adaptive linear controller for robotic manipulators", IEEE Trans. on Automatic Control.vol. AC-28, no. 2, pp. 162-1 70, February 1983.
[5] B.K. Kim, and K. G. Shin, "An adaptive podel following control of robotic manipulators", to appear in IEEE Trans Aerospace and Electronic Systems.
[6] J.Y. S. Luh and M. W. Walker, "Minimum-time aiong the path for a mechanical manipulator", Proc . of the IEEE CDC, Dec. 7-9, 1977, New Orleans, pp. 755-759.
[7] J.Y. S. Luh, and C. S. Lin, "Optimum path planning for mechanical manipulators", .4,5,VE Jounzal 3f Dynarzic Systems, Mearurement and Control , vol. 2, pp. 330-335, June 1981.
[8] M.E. Kahn and B. E. Roth, "The near minimum-time control of open-loop articulated kinematic chains", .ASME J . DSMC, vol. 93, no. 3, pp. 164-1 72, September 1971.
[9] B.K. Kim and K. G. Shin, "Near-optimal control of industrial manipulators with a weighted minimum time fuel criterion", to appear in Proc. 22nd CDC: San Antonio, TX., Dec. 1983.
[10] C.-S. Lin, P.-R. Chang, and J. Y. S. Luh, "Formulation and optimization of cubic polynomial joint trajectories for mechanical manipulators", Proc . 21 CDC, Orlando, FL., Dec. 1982.
[11] D. E. Kirk, Optimal control theory: an introduction , Prentice-Hall, Englewood Cliffs, New Jersey, 1971, pp, 227-238.
[12] R. P. C. Paul, Robot manipulators: Mathematics. programming. and control, MIT Press, Cambridge, Mass., 1981, pp. 157-1 95.
[13] D. Ter Haar, Elements of Hamiltonian mechanics , Secondedition, Pergamon Press, 1971, pp. 35-49.
附圖:
附件2
外文資料