購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
畢業(yè)論文題目
學(xué)校代碼:
序 號(hào):
本 科 畢 業(yè) 設(shè) 計(jì)
題目: 竹木旋切機(jī)刀架設(shè)計(jì)
學(xué) 院:
姓 名:
學(xué) 號(hào):
專 業(yè): 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
年 級(jí): 2005級(jí)
指導(dǎo)教師:
二OO九年 五 月
17
竹木旋切機(jī)刀架設(shè)計(jì)
摘 要
中國(guó)是森林資源極度匱乏的國(guó)家之一,同時(shí)面臨著全球環(huán)保熱情高漲的形勢(shì)。這種環(huán)境造成了我國(guó)林木加工資源與市場(chǎng)需求之間的尖銳矛盾。為解決這樣的困境,竹林木的深加工是一條必經(jīng)之路。雖然木頭旋切機(jī)已經(jīng)面市而且已經(jīng)發(fā)展完善,但是針對(duì)于竹木開(kāi)發(fā)的旋切機(jī)卻依然遲遲未見(jiàn)其面市,這嚴(yán)重阻礙了竹木深度開(kāi)發(fā)的腳步。在本文中重點(diǎn)探討了竹木旋切機(jī)的設(shè)計(jì)。本著經(jīng)濟(jì),可行,可靠的原則,仿照木頭旋切機(jī),從三個(gè)方面著手,縱觀國(guó)內(nèi)竹木旋切機(jī)的發(fā)展形勢(shì),充分說(shuō)明竹木旋切機(jī)具有非常廣闊的市場(chǎng)前景。其次對(duì)竹木旋切機(jī)的功能與作用原理進(jìn)行定性分析,竹木旋切機(jī)對(duì)竹木旋切產(chǎn)生薄皮多用貼面,其跟卷筆刀類似的工作原理都做了一一介紹。本文中最重要的部分是:對(duì)竹木旋切機(jī)整體以及刀架的設(shè)計(jì)。在整體部分中對(duì)夾緊方式和推動(dòng)方式進(jìn)行了探討和選擇。在刀架部分著重于各類外購(gòu)件的選擇,如減速機(jī)的選擇。和各類標(biāo)準(zhǔn)件的選擇和校核,在最后對(duì)刀架的微調(diào)機(jī)構(gòu)進(jìn)行了設(shè)計(jì)。
關(guān)鍵詞:竹木加工,無(wú)卡旋切機(jī),機(jī)電液一體化
The design of Wood peeling machine tool
Abstract: China is the extreme scarcity of forest resources, one of the countries at the same time facing a global environmental situation enthusiasm. This environment of our forest resources and market demand, the processing of the sharp contradictions between. To address this predicament, the deep processing of bamboo trees is a way that we must follow. Although the wood peeling machines are available now and has been well developed, but for the development of the wood peeling machine is still dragging its feet in keeping its market, which seriously hindered the pace of development of bamboo depth. In this article focuses on the design of wood peeling machine. Based on economic, practical and reliable principles, modeled on wood peeling machine, start from the three areas, when we look at the domestic wood peeling machine of the development of the situation, fully wood peeling machine has a very broad market prospects. Second, wood peeling machine of the function and role of the principle of qualitative analysis, bamboo wood veneer peeling machines have a thin skin on the use of veneer, the pencil sharpener with a similar working principle are introduced one by one done. In this paper, the most important part is: the whole of the wood peeling machine, as well as the design tool. Integral part in the way of clamping and discussed ways to promote and options. Part of the tool focuses on a wide range of options purchased items, such as the choice of reducer. And a variety of standard options and check the final fine-tuning of the tool design agencies.
Key words: Wood processing, non-card peeling machine, hydraulic integration
目錄
1 緒 論 1
1.1 引言 1
1.2 竹木旋切機(jī)的功能 2
1.3 竹木旋切機(jī)基本參數(shù) 2
2 旋切機(jī)整體設(shè)計(jì) 3
2.1 旋切機(jī)的種類和各自的特點(diǎn) 3
2.2 旋切機(jī)刀架推動(dòng)方式 4
2.4 竹木旋切機(jī)的工作原理 5
3旋切機(jī)刀架設(shè)計(jì) 6
3.1刀架功用 6
3.2減速機(jī)的選擇 6
3.3焊接鋼板的材料選擇 6
3.4鍵的選擇 7
3.4.1鍵的類型選擇: 7
3.4.2 鍵的尺寸選擇: 7
3.4.3鍵的強(qiáng)度校核 7
3.5 關(guān)于鏈條與鏈輪的計(jì)算與選擇(選用三圓弧一直線齒形鏈輪) 8
3.5.1 選擇鏈輪齒數(shù)與傳動(dòng)比 8
3.5.2 確定計(jì)算功率 8
3.5.3鏈的節(jié)距 8
3.5.4鏈傳動(dòng)的中心距和鏈節(jié)數(shù) 8
3.5.5小鏈輪轂孔最大直徑 9
3.5.6鏈與鏈輪的選擇 9
3.5.7鏈傳動(dòng)作用在軸上的力 10
3.5.8 確定鏈條的傳遞速率 10
3.5.9 低速鏈傳動(dòng)的靜力強(qiáng)度計(jì)算 10
3.6軸承與軸承座的選擇和校核 11
3.6.1軸承類型選擇 11
3.6.2預(yù)期計(jì)算壽命 11
3.6.3 軸承的選擇 11
3.6.4 軸承校核 11
3.6.5軸承座的選擇 12
3.7 摩擦導(dǎo)輥軸的設(shè)計(jì) 13
3.8微調(diào)結(jié)構(gòu)的設(shè)計(jì) 14
4總結(jié) 15
5參 考 文 獻(xiàn) 16
6 致 謝 17
1 緒 論
1.1 引言
中國(guó)是森林資源貧乏的國(guó)家,但是木材需求量卻非常大,據(jù)有關(guān)資料統(tǒng)計(jì),全國(guó)森林資源年耗量高達(dá)4億m~3,資源赤字約1億m~3。近十年來(lái),蓄積量減少了2800萬(wàn)m~3,成熟、過(guò)成熟林面積減少了近5000萬(wàn)m~3。本世紀(jì)初,木材短缺量已經(jīng)達(dá)到近5000萬(wàn)m~3。與此同時(shí),中國(guó)又擁有豐富的人工林、速生林資源,天然林資源的嚴(yán)重萎縮和供需矛盾的加劇,為開(kāi)發(fā)利用竹木造成了客觀上的前提,相對(duì)而言,竹木在直徑,厚度,材料韌性等方面與普通樹(shù)木有很大的差異,而目前在木材加工的旋切機(jī)市場(chǎng)上多是以樹(shù)木為加工對(duì)象的旋切機(jī),針對(duì)于竹木深度加工的旋切機(jī)卻較少,特別是在南方竹木林區(qū)。因此竹木旋切機(jī)的設(shè)計(jì)和開(kāi)發(fā)是具有廣泛的市場(chǎng)前景的。目前全世界都在大力提倡綠色環(huán)保,保護(hù)生態(tài)。綠色樹(shù)木不僅是綠色環(huán)保的對(duì)象,同時(shí)也是人們?nèi)粘I钪胁豢苫蛉钡牟牧?。在我?guó)森林木材資源極度匱乏,但是目前處于發(fā)展中國(guó)家的我國(guó)急需綠色環(huán)保,又能重復(fù)利用的木材。在南方木材相對(duì)稀缺,但是盛產(chǎn)竹木,因此竹木在一定程度上可以用來(lái)作為木制品加工材料。在竹木的深度加工中仿照林木旋切機(jī),同喬木相比,竹木在材質(zhì)上更韌性,在直徑上較小,在致密度更小.因此在仿照過(guò)程之中采用了一系列的措施使得我們的設(shè)計(jì)可以很好的完成切削加工任務(wù).本文中我們?cè)O(shè)計(jì)的竹木旋切機(jī)多用于對(duì)竹木的深度加工利用。在設(shè)計(jì)過(guò)程中我們仿照喬木旋切機(jī)的結(jié)構(gòu),同時(shí)又具有竹木加工的特點(diǎn)使得本文設(shè)計(jì)的竹木旋切機(jī)具有體積適中,質(zhì)量輕,加工效率高,加工質(zhì)量高的優(yōu)點(diǎn),非常適合南方地區(qū)竹木的深度加工
1.2 竹木旋切機(jī)的功能
竹木旋切機(jī)主要是利用摩擦導(dǎo)輥對(duì)竹木予以?shī)A緊,在摩擦導(dǎo)輥的摩擦力的作用下,一起旋轉(zhuǎn)。在刀具的作用下,竹木被切成薄皮(其厚度大約為(0.4-4),產(chǎn)品見(jiàn)圖1。本機(jī)床適用于旋切毛竹薄皮的專用設(shè)備,毛竹經(jīng)軟化后在本機(jī)床上用旋切的方法能從外到內(nèi)的將竹片薄皮旋切下來(lái),所旋切的竹薄皮可廣泛用于家具、建材等的裝飾貼面。做為樹(shù)木的旋切機(jī)的產(chǎn)品是單板主要用于生產(chǎn)膠合板
圖1
1.3 竹木旋切機(jī)基本參數(shù)
綜合目前國(guó)內(nèi)生產(chǎn)的一系列竹木旋切機(jī)其參考基本參數(shù)如下
旋切單板厚度(無(wú)級(jí)
摩擦導(dǎo)輥功率
機(jī)床重量
旋切速度
最大旋切長(zhǎng)度
最大旋切直徑
外型尺寸
0.4~4mm
10.5kw
4500kg
15~30m/min
1400mm
¢150mm
2900×1600×1050mm
2 旋切機(jī)整體設(shè)計(jì)
2.1 旋切機(jī)的種類和各自的特點(diǎn)
木工旋切機(jī)大體分為無(wú)卡木工旋切機(jī)和有卡木工旋切機(jī)
無(wú)卡木工旋切機(jī)(見(jiàn)圖2 )就是把一定長(zhǎng)度的木材平放入機(jī)臺(tái)內(nèi),前后兩側(cè)有滾軸轉(zhuǎn)動(dòng),用擠壓轉(zhuǎn)動(dòng)木材的方法從而達(dá)到旋切目的。無(wú)卡木工旋切機(jī)的優(yōu)點(diǎn)在于產(chǎn)品厚度比較均勻,容易裝夾。缺點(diǎn)在于由于裝夾力不夠大而造成跑刀,另外最大的缺點(diǎn)是剩木直徑較大
有卡木工旋切機(jī): 就是把一定長(zhǎng)度的木材平放入機(jī)臺(tái)上,左右兩側(cè)分別都有卡頭,都可旋轉(zhuǎn),兩側(cè)卡頭把木材擠住,開(kāi)始旋轉(zhuǎn)旋切,達(dá)到旋切目的。其優(yōu)點(diǎn)在于可以獲得較大的裝夾力,剩木直徑也較小。但其缺點(diǎn)在于產(chǎn)品的厚薄容易受到裝夾的影響,不太均勻。
由于竹木旋切機(jī)的產(chǎn)品是薄皮要求厚薄較為均勻,因此在此設(shè)計(jì)中選擇了無(wú)卡的方式。
圖2
2.2 旋切機(jī)刀架推動(dòng)方式
旋切機(jī)刀架放置于機(jī)身上,由于無(wú)卡方式需要利用摩擦導(dǎo)輥在徑向施加夾緊力,同時(shí)竹木在刀具切割的作用下直徑在不斷的減小。因此刀架需要在一定得推力作用下移動(dòng),同時(shí)也要求刀架是在以恒定的速度移動(dòng)。旋切機(jī)推動(dòng)方式主要有以下兩種
第一種是在電動(dòng)機(jī)和減速器的作用下利用渦輪和絲桿,對(duì)刀架進(jìn)行恒定推動(dòng)。
第二種是利用液壓泵和液壓缸對(duì)刀架進(jìn)行恒定推動(dòng)
在本設(shè)計(jì)中考慮到經(jīng)濟(jì)和結(jié)構(gòu)簡(jiǎn)單的因素,選擇了利用液壓泵和液壓缸對(duì)刀架進(jìn)行恒定推動(dòng)。
2.3 竹木旋切機(jī)的結(jié)構(gòu)示意圖
竹木旋切機(jī)的結(jié)構(gòu)示意圖(見(jiàn)圖3)
圖3
2.4 竹木旋切機(jī)的工作原理
竹木旋切機(jī)的工作原理(見(jiàn)圖4):其工作原理與卷筆刀的工作原理有點(diǎn)相似,在摩擦導(dǎo)輥的摩擦力的作用下,竹木的主運(yùn)動(dòng)——旋轉(zhuǎn)運(yùn)動(dòng)產(chǎn)生,與刀具鋒刃的作用下產(chǎn)生切削。
圖4
3旋切機(jī)刀架設(shè)計(jì)
3.1刀架功用
在竹木旋切機(jī)的設(shè)計(jì)過(guò)程中,我們是團(tuán)體合作來(lái)完成的,整個(gè)設(shè)計(jì)被分成了三個(gè)部分,機(jī)身的設(shè)計(jì),刀架的設(shè)計(jì),液壓系統(tǒng)的設(shè)計(jì)。我選擇了刀架的設(shè)計(jì)。刀架在整個(gè)竹木旋切機(jī)的設(shè)計(jì)過(guò)程中式最重要的一個(gè)部分。刀架的作用是將刀具固定,同時(shí)要攜帶一個(gè)摩擦導(dǎo)輥和減速機(jī),另外還需要在滑軌上移動(dòng),因此整個(gè)刀架的作用主要是支撐和移動(dòng)。所以在刀架的設(shè)計(jì)過(guò)程中結(jié)構(gòu)的設(shè)計(jì)是最重要的。
3.2減速機(jī)的選擇
查看國(guó)內(nèi)的現(xiàn)有產(chǎn)品,大多數(shù)生產(chǎn)廠家在設(shè)計(jì)竹木旋切時(shí)要求所加工的竹木的旋轉(zhuǎn)速度大約為15到20。在本設(shè)計(jì)中我們?cè)O(shè)計(jì)的磨擦輥的直徑為105(見(jiàn)零件圖)。因此我們需要的轉(zhuǎn)速大約為86到115。查看減速機(jī)的產(chǎn)品樣本標(biāo)準(zhǔn),我們選擇擺線針輪減速機(jī)。這類減速機(jī)具有傳動(dòng)比大,傳動(dòng)效率高,結(jié)構(gòu)緊湊等優(yōu)點(diǎn),在絕大多數(shù)情況下已替代兩級(jí),三級(jí)普通圓柱齒輪減速機(jī)。在本設(shè)計(jì)中我們根據(jù)其設(shè)計(jì)轉(zhuǎn)速要求86到115。我們選擇了XWD4-11-3-6P。
其基本參數(shù)如下表:
型號(hào)
輸出軸許用徑向力
輸出軸許用轉(zhuǎn)矩
輸出轉(zhuǎn)速
XWD4-11-3-6P
3460N
490
91
3.3焊接鋼板的材料選擇
在本設(shè)計(jì)中,設(shè)計(jì)任務(wù)要求我設(shè)計(jì)的是竹木旋切機(jī)機(jī)架部分。由于加工材料的特殊性,要求在加工過(guò)程中竹木具有一定的長(zhǎng)度,以提高加工效率。因此整個(gè)機(jī)架部分具有一定的長(zhǎng)度,厚度,所以我們?cè)谠O(shè)計(jì)機(jī)架部分的過(guò)程之中不能對(duì)機(jī)架采用鑄造的方法來(lái)生產(chǎn),而是采用焊接的方式來(lái)加工機(jī)架??紤]到作為承受中等載荷的結(jié)構(gòu)件,我們選擇了Q235作為我們主要的材料。Q235屬于碳素結(jié)構(gòu)鋼,含碳量低。這類鋼通常在熱軋空冷狀態(tài)下使用,其塑性高,可焊性高等特點(diǎn)。
3.4鍵的選擇
3.4.1鍵的類型選擇:
木工機(jī)械傳遞的力矩較小,振動(dòng)沖擊也較小,因此選用較為實(shí)用的普通平鍵,具有對(duì)中良好,裝拆方便的優(yōu)點(diǎn)應(yīng)用廣泛,能夠承受高精度,高速的特點(diǎn),因此適合次場(chǎng)合。我們選擇的時(shí)普通平鍵-B型
3.4.2 鍵的尺寸選擇:
由于我們選擇的減速機(jī)類型為XWD4-11-3-6P,其輸出軸的直徑為45.輸出軸的長(zhǎng)為74.根據(jù)機(jī)械零件設(shè)計(jì)手冊(cè)。其尺寸如下
鍵寬b
鍵高h(yuǎn)
鍵長(zhǎng)l
14
9
60
3.4.3鍵的強(qiáng)度校核
其中依據(jù)減速機(jī)產(chǎn)品樣品手冊(cè),可知輸出軸的許用轉(zhuǎn)矩為
依據(jù)下列表知
許用擠壓應(yīng)力許用壓力
聯(lián)接工作方式
鍵或轂軸的材料
載荷性質(zhì)
靜載荷
輕微沖擊
沖擊
靜聯(lián)接
鋼
120-150
100-120
60-90
鑄鐵
70-80
50-60
30-45
動(dòng)聯(lián)接
鋼
50
40
30
由表查得許用擠壓應(yīng)力,取平均值
由于,所以選擇這個(gè)鍵是合適的
3.5 關(guān)于鏈條與鏈輪的計(jì)算與選擇(選用三圓弧一直線齒形鏈輪)
3.5.1 選擇鏈輪齒數(shù)與傳動(dòng)比
由于摩擦導(dǎo)輥低速轉(zhuǎn)動(dòng),因此我們采用的動(dòng)力源來(lái)自于擺線針輪減速機(jī)。根據(jù)設(shè)計(jì)要求摩擦導(dǎo)輥的轉(zhuǎn)速為30到50 。而根據(jù)減速機(jī)產(chǎn)品樣品說(shuō)明書(shū)減速機(jī)的轉(zhuǎn)速為91 。因此我們預(yù)選擇傳動(dòng)比為2。
另外根據(jù)機(jī)械設(shè)計(jì)手冊(cè)同時(shí)摩擦導(dǎo)輥的要求轉(zhuǎn)速大約為0.25-0.33 ,優(yōu)先選用以下系列17,19,21等系列。因此選擇小鏈輪的齒數(shù)
3.5.2 確定計(jì)算功率
減速機(jī)的型號(hào)為:XWD4-11-3-6P
從產(chǎn)品樣品手冊(cè)易知其許用輸入功率為,許用輸出轉(zhuǎn)矩為:
3.5.3鏈的節(jié)距
允許采用的鏈條節(jié)距要根據(jù)功率和小鏈輪的轉(zhuǎn)速來(lái)選擇
由機(jī)械設(shè)計(jì)手冊(cè),預(yù)選擇節(jié)距
3.5.4鏈傳動(dòng)的中心距和鏈節(jié)數(shù)
對(duì)中心距不能調(diào)整的傳動(dòng)
根據(jù)設(shè)計(jì)技術(shù)要求,通過(guò)幾何計(jì)算初步估計(jì) 。
鏈節(jié)數(shù)與中心距之間的關(guān)系為:
最終圓整為:
理論中心距即:
中心距圓整為:
3.5.5小鏈輪轂孔最大直徑
鏈與鏈輪的節(jié)距:,
小鏈輪的齒數(shù)為
則鏈輪的結(jié)構(gòu)和各部分基本尺寸
分度圓直徑:
齒頂圓直徑:
齒根圓直徑:
3.5.6鏈與鏈輪的選擇
根據(jù)以上數(shù)據(jù),查找鏈與鏈輪產(chǎn)品樣品說(shuō)明書(shū)選擇以下型號(hào):
鏈輪
型號(hào):12B
齒部基本尺寸():
節(jié)距 19.05 滾子外徑 12.07
齒側(cè)半徑 19 倒角寬度 2
齒寬 11.1 齒寬 10.08
齒全寬 30.3 齒全寬 49.8
大小鏈輪的基本參數(shù)如下表:
齒數(shù)
齒頂圓直徑
分度圓直徑
齒側(cè)凸緣直徑
19
124.2
115.75
80
38
239
230.69
100
鏈條
型號(hào):
鏈條的基本參數(shù)如下表:
節(jié)距
滾子直徑
內(nèi)節(jié)內(nèi)寬
銷軸直徑
內(nèi)鏈板高度
19.05
12.07
11.68
5.72
16.13
3.5.7鏈傳動(dòng)作用在軸上的力
鏈傳動(dòng)作用在軸上的壓軸力可近似取為:
已知減速機(jī)輸出轉(zhuǎn)矩為:
在理論設(shè)計(jì)上,忽略了軸與孔間的轉(zhuǎn)矩?fù)p失,則可近似認(rèn)為鏈輪傳遞的轉(zhuǎn)矩等于
所以徑向圓周力
3.5.8 確定鏈條的傳遞速率
已知減速機(jī)的許用輸出轉(zhuǎn)速為
則
由于竹木的干徑較小,因此在旋切的過(guò)程之中不宜采用較高的轉(zhuǎn)速。另一方面較高的轉(zhuǎn)速也還會(huì)帶來(lái)刀具的磨損加快。綜合國(guó)內(nèi)的各類型竹木旋切機(jī)的轉(zhuǎn)速約為0.25——0.33又因?yàn)殒湕l的傳遞速度為0.55。所以我們?cè)谶\(yùn)動(dòng)傳遞的過(guò)程之中,我們選擇了傳動(dòng)比為2。則摩擦導(dǎo)輥的速度為0.28,而我們的大鏈輪的齒數(shù)選擇為
3.5.9 低速鏈傳動(dòng)的靜力強(qiáng)度計(jì)算
對(duì)于鏈速小于0.6的低速鏈傳動(dòng),因其抗拉靜力強(qiáng)度不夠而破壞的幾率比較大故需進(jìn)行抗拉靜力強(qiáng)度計(jì)算
即強(qiáng)度符合條件
3.6軸承與軸承座的選擇和校核
3.6.1軸承類型選擇
鑒于摩擦導(dǎo)輥的轉(zhuǎn)速為低速轉(zhuǎn)動(dòng),同時(shí)兼顧使用壽命的考慮。此刀架上的軸承的類型為圓柱滾子軸承
3.6.2預(yù)期計(jì)算壽命
每日工作8小時(shí)并且利用率較高的機(jī)械如金屬切削機(jī)床,木材加工機(jī)械,預(yù)期計(jì)算壽命為20000——30000小時(shí)
3.6.3 軸承的選擇
根據(jù)簡(jiǎn)明機(jī)械設(shè)計(jì)手冊(cè)初步選擇
選擇理由如下:軸承所受的載荷的大小,方向,和性質(zhì)是選擇軸承類型的主要依據(jù)
在竹木旋切機(jī)中,其工作原理為利用三個(gè)摩擦導(dǎo)輥對(duì)竹木予以加緊,利用導(dǎo)輥的摩擦力帶動(dòng)竹木旋轉(zhuǎn),使竹木在刀具上切割。因此從上述情況來(lái)考慮,軸承受到的徑向力遠(yuǎn)比軸向力要大的多,其次導(dǎo)輥的轉(zhuǎn)速較低。利用導(dǎo)輥的直徑為40,查看手冊(cè)選擇: 其基本參數(shù)如下:
軸承代號(hào)
外形尺寸
安裝尺寸
額定動(dòng)載荷
額定靜載荷
d
D
B
D1
D2
N208E
40
80
18
1.1
0.6
48
73
51.5
33.2
3.6.4 軸承校核
由上述給定條件,易知
根據(jù)機(jī)械設(shè)計(jì):當(dāng)量動(dòng)載荷,當(dāng)量靜載荷
刀架在液壓缸的作用下順著滑軌往復(fù)運(yùn)動(dòng),而摩擦導(dǎo)輥對(duì)木頭實(shí)施夾緊。在竹木旋切機(jī)的整體設(shè)計(jì)中要求液壓缸所能提供的壓強(qiáng)為,另外活塞直徑。
軸承受到的徑向力為
當(dāng)量動(dòng)載荷
當(dāng)量靜載荷
又知預(yù)期計(jì)算壽命
根據(jù),則所需的軸承應(yīng)具有的基本額定動(dòng)載荷。
計(jì)算得出
因此選擇的軸承符合條件
3.6.5軸承座的選擇
根據(jù)各廠家的軸承座產(chǎn)品樣品手冊(cè),由于圓柱滾子軸承的外徑80mm。因此查得軸承座型號(hào)和基本參數(shù)為(如下表)(見(jiàn)圖5)
型號(hào)
圖5
3.7 摩擦導(dǎo)輥軸的設(shè)計(jì)
進(jìn)行軸的強(qiáng)度校核計(jì)算時(shí),應(yīng)根據(jù)軸的具體受載及應(yīng)力情況,采取相應(yīng)的計(jì)算方法,并恰當(dāng)?shù)剡x取其許用應(yīng)力。軸1主要承受扭矩,應(yīng)按扭轉(zhuǎn)強(qiáng)度條件來(lái)計(jì)算。
軸的扭轉(zhuǎn)強(qiáng)度條件為:,由上式可得軸的直徑為:;
式中:τT—扭轉(zhuǎn)切應(yīng)力,單位為MPa;
T—軸所受的扭矩,單位為N?mm;
WT—軸的抗扭截面系數(shù),單位為mm;
n—軸的轉(zhuǎn)速,單位為r/min;
P—軸傳遞的功率,單位為kW;
d—計(jì)算截面處軸的直徑,單位為mm;
[τT]—許用扭轉(zhuǎn)切應(yīng)力,單位為MPa。
其中 T1=3.941×10 N?mm, T2=u?T1=13/9×3.941×10 N?mm, p1=7.5kW,n1=164r/min。代人各值得 =110×=39.4mm,
對(duì)于直徑100mm的軸,有一個(gè)鍵槽時(shí),軸徑增大5%—7%,然后將軸徑圓整為標(biāo)準(zhǔn)直徑,則d1min=40mm,,軸1形狀和其他尺寸見(jiàn)零件圖。
軸常用幾種材料的[τT]及A0值
軸的材料
Q235-A、20
Q275、35
(1Cr18Ni9Ti)
45
40Cr、35SiMn
38SiMnMo
[τT]/MPa
15-25
20-35
25-45
35-55
A0
149-126
135-112
126-103
112-97
3.8微調(diào)結(jié)構(gòu)的設(shè)計(jì)
從工作原理易知,在竹木旋切機(jī)中產(chǎn)品的厚度是由刀架上部的摩擦導(dǎo)輥和刀具的刀尖間距離決定的,因此厚度的調(diào)整需要一個(gè)微調(diào)機(jī)構(gòu)。綜合多方面因素的考慮,特別是精度和力學(xué)方面,由于精度要求較低,同時(shí)在受力較小。在本設(shè)計(jì)中采用了較為普通的微調(diào)設(shè)計(jì)——微調(diào)螺栓。
另外在刀具裝夾裝置中,由于刀具的磨損,導(dǎo)致刀具的長(zhǎng)度減小,容易造成產(chǎn)品的厚度增大,因此采用上述同樣的微調(diào)設(shè)計(jì)
4總結(jié)
本設(shè)計(jì)雖然經(jīng)過(guò)多次校核,但是在很多細(xì)節(jié)方面都存在不足,仍然需要在實(shí)踐的過(guò)程中不斷改進(jìn),不過(guò)這種設(shè)計(jì)方案加工精度不高,取材價(jià)格比較低廉,從而大大降低了成本。另一方面,木工鋸割對(duì)精度要求不是很高,所以本設(shè)計(jì)生產(chǎn)出的產(chǎn)品會(huì)有可觀的市場(chǎng)需求量,可用于批量生產(chǎn)。
本設(shè)計(jì)從開(kāi)始設(shè)計(jì)到結(jié)束任務(wù)的這一段時(shí)期,我學(xué)到了很多知識(shí),對(duì)我的專業(yè)有了更深入的了解,頭腦中開(kāi)始有了真正的機(jī)械意識(shí)。在沒(méi)有接觸實(shí)際的設(shè)計(jì)時(shí),我還只是停留在理論的層面,并且沒(méi)有接觸實(shí)際的理論也是比較容易被遺忘的,在剛剛開(kāi)始設(shè)計(jì)任務(wù)的那段時(shí)間里,我是非常著急的,因?yàn)楹芏嗬碚撋系臇|西不知道怎么與設(shè)計(jì)結(jié)合,并且因?yàn)闆](méi)有實(shí)踐的經(jīng)驗(yàn),很多機(jī)構(gòu)都想象不出來(lái),不知道設(shè)計(jì)怎樣的機(jī)構(gòu)才能達(dá)到目的要求。所以我就多次到金工實(shí)習(xí)工廠去接觸我們?cè)?jīng)見(jiàn)過(guò)但是都沒(méi)有留心的各種機(jī)器,深刻了解各種機(jī)構(gòu)的運(yùn)動(dòng)原理,并且我的指導(dǎo)老師有著淵博的理論知識(shí)和長(zhǎng)期的實(shí)際工作經(jīng)驗(yàn),從他那里我學(xué)到了很多知識(shí),老師嚴(yán)謹(jǐn)?shù)淖黠L(fēng)和認(rèn)真的工作態(tài)度都深刻地影響到了我,我想,這段時(shí)期從老師那里學(xué)到的東西無(wú)論是在今后的工作上還是在生活上對(duì)我都將具有非常重要的意義,我會(huì)銘記在心,時(shí)刻不忘老師對(duì)我的教導(dǎo)。在這段時(shí)間當(dāng)中,我不僅對(duì)實(shí)踐方面的知識(shí)有了更深入的體會(huì),在理論上也有了較大的提高,以前的理論可以說(shuō)是空的理論,只有與實(shí)踐相結(jié)合的理論才能有說(shuō)服力,才能讓人銘記于心。同時(shí),在繪圖方面也有了較大的提高,不善電腦繪圖的我在這段時(shí)間當(dāng)中對(duì)電腦輔助繪圖了解的更加透徹了,開(kāi)始的時(shí)候?qū)@方面的知識(shí)還比較生疏,遇到問(wèn)題我就及時(shí)去請(qǐng)教老師和同學(xué),盡量在我的能力范圍之內(nèi)將我的圖紙完成到最好,將設(shè)計(jì)完善到更好的標(biāo)準(zhǔn)。
總的來(lái)說(shuō)這次畢業(yè)設(shè)計(jì)是比較成功的設(shè)計(jì),它使我學(xué)到了很多有用的東西,拓寬了知識(shí)面。這四年所學(xué)的知識(shí)運(yùn)用到畢業(yè)設(shè)計(jì)當(dāng)中,為我的大學(xué)生活畫(huà)上了一個(gè)圓滿的句號(hào)。
5參 考 文 獻(xiàn)
[1]
于就泗,齊發(fā)主編.機(jī)械工程材料.大連:大連理工大學(xué),2003
[2]
吳宗澤主編.機(jī)械零件設(shè)計(jì)手冊(cè).北京:機(jī)械工業(yè)出版社,2003.11
[3]
吉林大學(xué)傳動(dòng)鏈傳動(dòng)研究所等編.中國(guó)鏈條,鏈輪產(chǎn)品樣本.北京:機(jī)械工業(yè)出版社,2000.6
[4]
濮良貴,紀(jì)名剛主編。機(jī)械設(shè)計(jì)。北京:高等教育出版社,2001
[5]
曾志新主編。機(jī)械制造技術(shù)基礎(chǔ)。武漢:武漢理工大學(xué)出版社,2004
[6]
譚建榮等編。圖學(xué)基礎(chǔ)教程。北京:高等教育出版社,1999.10
[7]
唐金松編。簡(jiǎn)明機(jī)械設(shè)計(jì)手冊(cè)。上海:上??茖W(xué)技術(shù)出版社,2000.10
[8]
汝元功,唐照民主編。機(jī)械設(shè)計(jì)手冊(cè)。北京:高等教育出版社,1995
[9]
劉景泉主編。機(jī)械實(shí)用手冊(cè)。北京:人民交通出版社,1998.8
[10]
烏爾曼著;黃靖遠(yuǎn)等譯。機(jī)械設(shè)計(jì)過(guò)程。北京:機(jī)械工業(yè)出版社,2006.6
[11]
孫巖,陳曉羅,熊涌主編。機(jī)械設(shè)計(jì)課程設(shè)計(jì)。北京:北京理工大學(xué)出版社,2007.3
6 致 謝
在這次畢業(yè)設(shè)計(jì)中我的指導(dǎo)老師龔水泉老師給了我很大的幫助,在我遇到不明白或者不會(huì)的知識(shí)的時(shí)候及時(shí)的幫我講解,雖然我問(wèn)的問(wèn)題都很簡(jiǎn)單,但龔老師還是耐心的一點(diǎn)一點(diǎn)給我講解,讓我以便于及時(shí)的進(jìn)行我的設(shè)計(jì)。還有教過(guò)我的各位老師像吳彥紅,曾一凡,張廬陵、郭一彪、吳瑞梅、雷軍波等老師,雖然這些老師不是我的指導(dǎo)老師,但是他們教了我很多專業(yè)知識(shí),謝謝這些老師多年的培養(yǎng)。還有還有我的同學(xué)韋斯,馮彬,陳張,當(dāng)我向他們請(qǐng)教問(wèn)題的時(shí)候也是及其耐心的給我講解,幫助我解決了許多疑難問(wèn)題。如果不是老師及同學(xué)的幫助,我可能現(xiàn)在還沒(méi)做好設(shè)計(jì),真的謝謝大家,都不厭其煩地幫助我。在這里還要感謝一位無(wú)言的老師:圖書(shū)館。我在那里查閱了許多的專業(yè)書(shū)籍,并且在電子閱覽室:中國(guó)知網(wǎng)里面看了很多專業(yè)期刊雜志,掌握了大量的關(guān)于液壓及升降臺(tái)方面的知識(shí),沒(méi)有它的幫助我也不會(huì)這么順利的完成我的畢業(yè)設(shè)計(jì)。對(duì)于上述的各位教授講師同學(xué),我在這里再一次向你們表示最為真誠(chéng)的感謝,我想老師需要的不是學(xué)生們給你們說(shuō)了多好聽(tīng)的話,你們最希望看到的是你們的學(xué)生會(huì)在今后的道路上更加的努力,有一個(gè)美好的明天。我想對(duì)你們說(shuō):敬愛(ài)的老師,你們放心,我會(huì)努力做好的,在未來(lái)的學(xué)習(xí)中我會(huì)嚴(yán)格要求自己。把最衷心的感謝再一次獻(xiàn)給你們。
附錄-中英文翻譯
外文翻譯
英文原文
MACHINABILITY
The machinability of a material usually defined in terms of four factors:
1、 Surface finish and integrity of the machined part;
2、 Tool life obtained;
3、 Force and power requirements;
4、 Chip control.
Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.
Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.
1 Machinability Of Steels
Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels.
Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.
Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.
Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels.
When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “l(fā)ow carbon,” a condition that improves their corrosion resistance.)
However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.
Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.
Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.
The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels.
Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.
Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.
In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties.
Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.
2 Machinability of Various Other Metals
Aluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.
Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.
Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.
Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.
Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass.
Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).
Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.
Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.
Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high.
Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine.
Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures.
Zirconium has good machinability. It requires a coolant-type cutting fluid, however, because of the explosion and fire.
3 Machinability of Various Materials
Graphite is abrasive; it requires hard, abrasion-resistant, sharp tools.
Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, and
proper support of the workpiece. Tools should be sharp.
External cooling of the cutting zone may be necessary to keep the chips from becoming “gummy” and sticking to the tools. Cooling can usually be achieved with a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from to (to), and then cooled slowly and uniformly to room temperature.
Thermosetting plastics are brittle and sensitive to thermal gradients during cutting. Their machinability is generally similar to that of thermoplastics.
Because of the fibers present, reinforced plastics are very abrasive and are difficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers.
The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processing parameters, such as ductile-regime cutting (Section 22.4.2).
Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the individual components, i.e., reinforcing or whiskers, as well as the matrix material.
4 Thermally Assisted Machining
Metals and alloys that are difficult to machine at room temperature can be machined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heat—a torch, induction coil, high-energy beam (such as laser or electron beam), or plasma arc—is forces, (b) increased tool life, (c) use of inexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter.
It may be difficult to heat and maintain a uniform temperature distribution within the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride.
SUMMARY
Machinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.
中文譯文
切削性能
材料的切削性能通常取決于四個(gè)因素:
1. 表面光潔度和被加工部分的完整性;
2. 刀具的壽命期限;
3. 切削力和切削功率的要求;
4. 切屑的控制。
因此,良好的切削加工性能和良好的表面光潔度、完整性、刀具壽命長(zhǎng)、低切削力和切削功率要求。至于切削控制,長(zhǎng)而薄(纖細(xì))的切屑,如果不斷開(kāi),會(huì)使切削區(qū)變得錯(cuò)綜復(fù)雜,嚴(yán)重干擾切削操作。
因?yàn)榍邢鞑僮鞯膹?fù)雜本質(zhì),很難建立關(guān)系去定量地確定一種材料的切削加工性能。在生產(chǎn)基地、刀具壽命和表面粗糙度通常被認(rèn)為是影響切削性能的最重要的因素。雖然無(wú)法更進(jìn)一步證明,但是下面的例子都能夠近似劃分切削性能等級(jí)。
1鋼的切削性能
因?yàn)殇撌亲钪匾墓こ滩牧现?正如在第5章),他們的切削加工性能已經(jīng)研究得很透徹了。其主要是通過(guò)增加鉛、硫提高了鋼的切削加工性能,得到所謂的易切削鋼。
加硫鋼和回磷鋼。 硫化錳夾雜物在鋼中形成(二相粒子),在剪切帶中產(chǎn)生應(yīng)力集中。結(jié)果,產(chǎn)生的切屑很容易斷裂而且都很小,這樣就可以改善切削性能。在大小、形狀、分布等方面,這些夾雜物的濃度顯著影響切削性能。碲和硒等元素,這都是類似硫磺化學(xué)物品,作為加硫鋼中的夾雜物
在鋼中磷有兩個(gè)非常重要的影響。加強(qiáng)鐵素體,導(dǎo)致硬度增加。更好的切屑形成和表面光潔度導(dǎo)致更硬的鋼。注意, 由于切邊碎粒和低表面光潔度的影響,低碳鋼很難加工,。第二個(gè)原因是增加硬度影響而形成、短而不是連續(xù)的切削,從而提高切削性能。
鉛鋼。相當(dāng)高比例的錳硫化物雜質(zhì)凝固在鉛鋼的頂端。在不經(jīng)過(guò)硫處理的鋼、鉛以分散的形式行程精細(xì)顆粒。鉛是不溶于鐵、銅、鋁及其合金的。因?yàn)槠漭^低的剪切強(qiáng)度,因此,作為一個(gè)領(lǐng)先的固體潤(rùn)滑劑(32.11節(jié)),涂在切割時(shí)切屑界面。這種行為被證實(shí)當(dāng)加工鉛鋼時(shí)切屑上的表面存在高濃度的鉛。
當(dāng)溫度足夠高時(shí),比如說(shuō),在高切削速度和進(jìn)給量(20.6節(jié))-正前方熔化的鉛,成為工具的液體潤(rùn)滑劑。除了這一效果,還降低了鉛在主要剪切帶的剪切應(yīng)力、降低切削力等和功耗。鉛可以使用于每一個(gè)等級(jí)的鋼,如10 xx,xx,xx,十二11 41 xx,等。鉛鋼確認(rèn)是印刷在第二個(gè)和第三個(gè)數(shù)字之間(例如,10 L45)。(注意:不銹鋼、一樣用這封信的L的意思是“低碳,”一個(gè)條件,那就是提高他們的耐腐蝕性。)
當(dāng)溫度足夠高時(shí)—例如,在高的切削速度和進(jìn)刀速度下—鉛在刀具前直接熔化,并且充當(dāng)液體潤(rùn)滑劑。除了這個(gè)作用,鉛降低第一剪切區(qū)中的剪應(yīng)力,減小切削力和功率消耗。鉛能用于各種鋼號(hào),例如10XX,11XX,12XX,41XX等等。鉛鋼被第二和第三數(shù)碼中的字母L所識(shí)別(例如,10L45)。(需要注意的是在不銹鋼中,字母L的相同用法指的是低碳,提高它們的耐蝕性的條件)。
然而,因?yàn)殂U是有名的毒素和污染物,因此在鋼的使用中存在著嚴(yán)重的環(huán)境隱患(在鋼產(chǎn)品中每年大約有4500噸的鉛消耗)。結(jié)果,對(duì)于估算鋼中含鉛量的使用存在一個(gè)持續(xù)的趨勢(shì)。鉍和錫現(xiàn)正作為鋼中的鉛最可能的替代物而被人們所研究。
脫氧鈣鋼 一個(gè)重要的發(fā)展是脫氧鈣鋼,在脫氧鈣鋼中矽酸鈣鹽中的氧化物片的形成。這些片狀,依次減小第二剪切區(qū)中的力量,降低刀具和切屑接口處的摩擦和磨損。溫度也相應(yīng)地降低。結(jié)果,這些鋼產(chǎn)生更小的月牙洼磨損,特別是在高切削速度時(shí)更是如此。
不銹鋼 奧氏體鋼通常很難機(jī)加工。振動(dòng)能成為一個(gè)問(wèn)題,需要有高硬度的機(jī)床。然而,鐵素體不銹鋼有很好的可機(jī)加工性。馬氏體鋼易磨蝕,易于形成積屑瘤,并且要求刀具材料有高的熱硬度和耐月牙洼磨損性。經(jīng)沉淀硬化的不銹鋼強(qiáng)度高、磨蝕性強(qiáng),因此要求刀具材料硬而耐磨。
鋼中其它元素在可機(jī)加工性方面的影響 鋼中鋁和矽的存在總是有害的,因?yàn)檫@些元素結(jié)合氧會(huì)生成氧化鋁和矽酸鹽,而氧化鋁和矽酸鹽硬且具有磨蝕性。這些化合物增加刀具磨損,降低可機(jī)加工性。因此生產(chǎn)和使用凈化鋼非常必要。
根據(jù)它們的構(gòu)成,碳和錳鋼在鋼的可機(jī)加工性方面有不同的影響。低碳素鋼(少于0.15%的碳)通過(guò)形成一個(gè)積屑瘤能生成很差的表面光潔性。盡管鑄鋼的可機(jī)加工性和鍛鋼的大致相同,但鑄鋼具有更大的磨蝕性。刀具和模具鋼很難用于機(jī)加工,他們通常再煅燒后再機(jī)加工。大多數(shù)鋼的可機(jī)加工性在冷加工后都有所提高,冷加工能使材料變硬并且減少積屑瘤的形成。
其它合金元素,例如鎳、鉻、鉗和釩,能提高鋼的特性,減小可機(jī)加工性。硼的影響可以忽視。氣態(tài)元素比如氫和氮在鋼的特性方面能有特別的有害影響。氧已經(jīng)被證明了在硫化錳夾雜物的縱橫比方面有很強(qiáng)的影響。越高的含氧量,就產(chǎn)生越低的縱橫比和越高的可機(jī)加工性。
選擇各種元素以改善可加工性,我們應(yīng)該考慮到這些元素對(duì)已加工零件在使用中的性能和強(qiáng)度的不利影響。例如,當(dāng)溫度升高時(shí),鋁會(huì)使鋼變脆(液體—金屬脆化,熱脆化,見(jiàn)1.4.3節(jié)),盡管其在室溫下對(duì)力學(xué)性能沒(méi)有影響。
因?yàn)榱蚧F的構(gòu)成,硫能?chē)?yán)重的減少鋼的熱加工性,除非有足夠的錳來(lái)防止這種結(jié)構(gòu)的形成。在室溫下,二次磷化鋼的機(jī)械性能依賴于變形的硫化錳夾雜物的定位(各向異性)。二次磷化鋼具有更小的延展性,被單獨(dú)生成來(lái)提高機(jī)加工性。
2 其它不同金屬的機(jī)加工性
盡管越軟的品種易于生成積屑瘤,但鋁通常很容易被機(jī)加工,導(dǎo)致了很差的表面光潔性。高的切削速度,高的前角和高的后角都被推薦了。有高含量的矽的鍛鋁合金鑄鋁合金也許具有磨蝕性,它們要求更硬的刀具材料。尺寸公差控制也許在機(jī)加工鋁時(shí)會(huì)成為一個(gè)問(wèn)題,因?yàn)樗信蛎浀母邔?dǎo)熱系數(shù)和相對(duì)低的彈性模數(shù)。
鈹和鑄鐵相同。因?yàn)樗吣ノg性和毒性,盡管它要求在可控人工環(huán)境下進(jìn)行機(jī)加工。
灰鑄鐵普遍地可加工,但也有磨蝕性。鑄造無(wú)中的游離碳化物降低它們的可機(jī)加工性,引起刀具切屑或裂口。它需要具有強(qiáng)韌性的工具。具有堅(jiān)硬的刀具材料的球墨鑄鐵和韌性鐵是可加工的。
鈷基合金有磨蝕性且高度加工硬化的。它們要求尖的且具有耐蝕性的刀具材料并且有低的走刀和速度。
盡管鑄銅合金很容易機(jī)加工,但因?yàn)殄戙~的積屑瘤形成因而鍛銅很難機(jī)加工。黃銅很容易機(jī)加工,特別是有添加的鉛更容易。青銅比黃銅更難機(jī)加工。
鎂很容易機(jī)加工,鎂既有很好的表面光潔性和長(zhǎng)久的刀具壽命。然而,因?yàn)楦叩难趸俣群突鸱N的危險(xiǎn)(這種元素易燃),因此我們應(yīng)該特別小心使用它。
鉗易拉長(zhǎng)且加工硬化,因此它生成很差的表面光潔性。尖的刀具是很必要的。
鎳基合金加工硬化,具有磨蝕性,且在高溫下非常堅(jiān)硬。它的可機(jī)加工性和不銹鋼相同。
鉭非常的加工硬化,具有可延性且柔軟。它生成很差的表面光潔性且刀具磨損非常大。
鈦和它的合金導(dǎo)熱性(的確,是所有金屬中最低的),因此引起明顯的溫度升高和積屑瘤。它們是難機(jī)加工的。
鎢易脆,堅(jiān)硬,且具有磨蝕性,因此盡管它的性能在高溫下能大大提高,但它的機(jī)加工性仍很低。
鋯有很好的機(jī)加工性。然而,因?yàn)橛斜ê突鸱N的危險(xiǎn)性,它要求有一個(gè)冷卻性質(zhì)好的切削液。
3 各種材料的機(jī)加工性
石墨具有磨蝕性。它要求硬的、尖的,具有耐蝕性的刀具。
塑性塑料通常有低的導(dǎo)熱性,低的彈性模數(shù)和低的軟化溫度。因此,機(jī)加工熱塑性塑料要求有正前角的刀具(以此降低切削力),還要求有大的后角,小的切削和走刀深的,相對(duì)高的速度和工件的正確支承。刀具應(yīng)該很尖。
切削區(qū)的外部冷卻也許很必要,以此來(lái)防止切屑變的有黏性且粘在刀具上。有了空氣流,汽霧或水溶性油,通常就能實(shí)現(xiàn)冷卻。在機(jī)加工時(shí),殘余應(yīng)力也許能生成并發(fā)展。為了解除這些力,已加工的部分要在()的溫度范圍內(nèi)冷卻一段時(shí)間,然而慢慢地?zé)o變化地冷卻到室溫。
熱固性塑料易脆,并且在切削時(shí)對(duì)熱梯度很敏感。它的機(jī)加工性和熱塑性塑料的相同。
因?yàn)槔w維的存在,加強(qiáng)塑料具有磨蝕性,且很難機(jī)加工。纖維的撕裂、拉出和邊界分層是非常嚴(yán)重的問(wèn)題。它們能導(dǎo)致構(gòu)成要素的承載能力大大下降。而且,這些材料的機(jī)加工要求對(duì)加工殘片仔細(xì)切除,以此來(lái)避免接觸和吸進(jìn)纖維。
隨著納米陶瓷(見(jiàn)8.2.5節(jié))的發(fā)展和適當(dāng)?shù)膮?shù)處理的選擇,例如塑性切削(見(jiàn)22.4.2節(jié)),陶瓷器的可機(jī)加工性已大大地提高了。
金屬基復(fù)合材料和陶瓷基復(fù)合材料很能機(jī)加工,它們依賴于單獨(dú)的成分的特性,比如說(shuō)增強(qiáng)纖維或金屬須和基體材料。
4 熱輔助加工
在室溫下很難機(jī)加工的金屬和合金在高溫下能更容易地機(jī)加工。在熱輔助加工時(shí)(高溫切削),熱源—一個(gè)火把,感應(yīng)線圈,高能束流(例如雷射或電子束),或等離子弧—被集中在切削刀具前的一塊區(qū)域內(nèi)。好處是:(a)低的切削力。(b)增加的刀具壽命。(c)便宜的切削刀具材料的使用。(d)更高的材料切除率。(e)減少振動(dòng)。
也許很難在工件內(nèi)加熱和保持一個(gè)不變的溫度分布。而且,工件的最初微觀結(jié)構(gòu)也許被高溫影響,且這種影響是相當(dāng)有害的。盡管實(shí)驗(yàn)在進(jìn)行中,以此來(lái)機(jī)加工陶瓷器如氮化矽,但高溫切削仍大多數(shù)應(yīng)用在高強(qiáng)度金屬和高溫度合金的車(chē)削中。
小結(jié)
通常,零件的可機(jī)加工性能是根據(jù)以下因素來(lái)定義的:表面粗糙度,刀具的壽命,切削力和功率的需求以及切屑的控制。材料的可機(jī)加工性能不僅取決于起內(nèi)在特性和微觀結(jié)構(gòu),而且也依賴于工藝參數(shù)的適當(dāng)選擇與控制。
20