八年級(jí)數(shù)學(xué)上冊 2_5 等腰三角形的軸對(duì)稱性導(dǎo)學(xué)案1(新版)蘇科版
《八年級(jí)數(shù)學(xué)上冊 2_5 等腰三角形的軸對(duì)稱性導(dǎo)學(xué)案1(新版)蘇科版》由會(huì)員分享,可在線閱讀,更多相關(guān)《八年級(jí)數(shù)學(xué)上冊 2_5 等腰三角形的軸對(duì)稱性導(dǎo)學(xué)案1(新版)蘇科版(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2.5 等腰三角形的軸對(duì)稱性(1) 學(xué)習(xí)目標(biāo): 1.理解等腰三角形的軸對(duì)稱性及其相關(guān)性質(zhì); 2.能夠證明等腰三角形的性質(zhì)定理; 3.能夠運(yùn)用等腰三角形的性質(zhì)定理解決相關(guān)問題; 4.經(jīng)歷折紙、畫圖、觀察、推理等操作活動(dòng)的合理性進(jìn)行證明的過程,不斷感受合情推理和演繹推理都是人們正確認(rèn)識(shí)事物的重要途徑. 學(xué)習(xí)過程 【情境創(chuàng)設(shè)】 1.觀察圖中的等腰三角形ABC,分別說出它們的腰、底邊、頂角和底角. 2.把該等腰三角形沿頂角平分線對(duì)折展開,你有什么發(fā)現(xiàn)? 【問題研究】 問題一:等腰三角形是軸對(duì)稱圖形嗎?它的對(duì)稱軸是什么? 問題二:找出等腰三角形ABC對(duì)折后重合的線段和角. 問題三:由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的哪些性質(zhì)呢?說一說你的猜想. 歸納總結(jié) 等腰三角形的兩底角相等. 等腰三角形底邊上的高線、中線及頂角平分線重合. 思考:1.你能證明上述定理嗎? 2.你有不同的證明方法嗎 操作嘗試 按下列作法,用直尺和圓規(guī)作等腰三角形ABC,使底邊BC=a,高AD=h. 學(xué)生動(dòng)手作圖. 作法 圖形 1.作線段BC=a. 2.作線段BC的垂直平分線MN,MN交BC于點(diǎn)D. 3.在MN上截取線段DA,使AD=h. 4.連接AB、AC.△ABC就是所求作的等腰三角形. 例題講解 .如圖,在△ABC中,AB = AC,點(diǎn)D在BC上,且AD = BD. 找出相等的角并說明理由; 【變式拓展】能力提升、突破難點(diǎn) 如圖,在△ABC中,AB=AC,且BC=BD=AD,求△ABC 各內(nèi)角的度數(shù). 【課堂小結(jié)】 【反饋練習(xí)】 1.(1)等腰三角形的一個(gè)底角是70,則它的頂角是 ; (2)等腰三角形的一個(gè)角是30,則它的另外兩個(gè)角分別為 ; (3)等腰三角形的一個(gè)角是100,則它的另外兩個(gè)角分別為 ; (4)在△ABC中,AB=AC.如果∠B=70,那么∠C= ,∠A= ; 如果∠A=70,那么∠C= ,∠B= ; 如果有一個(gè)角等于120,那么∠A= ,∠B= ∠C= ; 2.已知在△ABC中,AB=AC,O是△ABC內(nèi)一點(diǎn),且OB=OC.判斷AO與BC的位置關(guān)系,并說明理由.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 八年級(jí)數(shù)學(xué)上冊 2_5 等腰三角形的軸對(duì)稱性導(dǎo)學(xué)案1新版蘇科版 年級(jí) 數(shù)學(xué) 上冊 _5 等腰三角形 軸對(duì)稱 性導(dǎo)學(xué)案 新版 蘇科版
鏈接地址:http://m.szxfmmzy.com/p-11909642.html