《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)(十一)第11講 空間幾何體配套作業(yè) 文(解析版)》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)(十一)第11講 空間幾何體配套作業(yè) 文(解析版)(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)(十一)第11講 空間幾何體配套作業(yè) 文(解析版)
[第11講 空間幾何體]
(時(shí)間:45分鐘)
1.將長方體截去一個四棱錐后,得到的幾何體的直觀圖如圖11-1所示,則該幾何體的俯視圖為( )
圖11-1
圖11-2
2.一個多面體的三視圖如圖11-3所示,其中主視圖是正方形,左視圖是等腰三角形,則該幾何體的表面積為( )
A.88 B.98 C.108 D.158
圖11-3
圖11-4
3.一個簡單組合體的三視圖及尺寸如圖11-
2、4所示(單位:mm),則該組合體的體積為( )
A.32 mm3 B.48 mm3 C.56 mm3 D.64 mm3
4.一個簡單幾何體的主視圖、左視圖如圖11-5所示,則其俯視圖不可能為①長方形;②正方形;③圓;④橢圓.其中正確的是( )
圖11-5
A.①② B.②③ C.③④ D.①④
5.已知體積為的正三棱柱(底面是正三角形且側(cè)棱垂直底面)的三視圖如圖11-6所示,則此三棱柱的高為( )
圖11-6
A. B. C.1 D.
6.一個幾何體是由若干個邊長為1的正方體組成的,其主視圖和左視圖如圖11-7所示,若把這個幾何體放到一個底面
3、半徑為的盛若干水的圓柱形容器,沒入水中,則水面上升的高度(不溢出)最大為( )
圖11-7
A. B.
C. D.
7.如圖11-8所示是一個半徑等于2的半球,現(xiàn)過半球底面的中心作一個與底面成80°角的截面,則截面的面積為( )
圖11-8
A. B.π
C.2π D.πsin80°
8.如圖11-9所示是一個幾何體的三視圖,則該幾何體的體積為( )
圖11-9
A.1 B. C. D.
9.已知空間幾何體的三視圖如圖11-10所示,則該幾何體的各側(cè)面圖形中,是直角三角形的有( )
圖11-10
A.0個 B.1個
4、
C.2個 D.3個
10.有一個棱長為1的正方體,按任意方向正投影,其投影面積的最大值是( )
A.1 B. C. D.
11.一空間幾何體的三視圖如圖11-11所示,則該幾何體的體積為( )
A.π B.π
C.18π D.π
圖11-11
12.一個物體的底座是兩個相同的幾何體,它的三視圖及其尺寸(單位:dm)如圖11-12所示,則這個物體的體積為( )
圖11-12
A.(120+16π) dm3
B.(120+8π) dm3
C.(120+4π) dm3
D.(60+8π) dm3
13.某型號冰淇淋上半部分是半球,下半部分
5、是圓錐,其主視圖如圖11-13所示,則該型號冰淇淋的體積等于________.
圖11-13
14.一個幾何體的三視圖如圖11-14所示,其中主視圖和左視圖是腰長為1的兩個全等的等腰直角三角形,該幾何體的體積是________;若該幾何體的所有頂點(diǎn)在同一球面上,則球的表面積是________.
圖11-14
圖11-15
15.如圖11-15,已知三棱錐O-ABC,OA,OB,OC兩兩垂直且長度均為6,長為2的線段MN的一個端點(diǎn)M在棱OA上運(yùn)動,另一個端點(diǎn)N在△OBC內(nèi)運(yùn)動(含邊界),則MN的中點(diǎn)P的軌跡與三棱錐的面OAB,OBC,OAC圍成的幾何體的體積為____
6、____.
專題限時(shí)集訓(xùn)(十一)
【基礎(chǔ)演練】
1.C [解析] 長方體的側(cè)面與底面垂直,所以俯視圖是C.
2.A [解析] 由三視圖可知,該幾何體是一個橫放的三棱柱,底面三角形是等腰三角形(底為6,高為4),三棱柱的高為4,故底面三角形的腰長為=5.故該幾何體的表面積為S=×6×4×2+5×4×2+6×4=88.故選A.
3.D [解析] 兩個柱體的組合.體積是6×4×1+2×4×5=64.
4.B [解析] 由于主視圖和左視圖的底邊長度不同,故俯視圖一定不是正方形和圓.
【提升訓(xùn)練】
5.C [解析] 正三棱柱的底面三角形高為,故邊長為2,設(shè)正三棱柱的高為h,則由正
7、三棱柱的體積公式有,=×2××h?h=1.
6.B [解析] 由題知,底部這一層最多擺放9個正方體,上面一層最多擺放4個正方體,故組合體的體積最大值為13,設(shè)水面上升的高度為h,則13=πh,則h=.
7.C [解析] 所作截面是一個半大圓,面積為×4π=2π.
8.B [解析] 由題意可知,該幾何體為一個四棱錐,底面面積為,高為1,體積為V=××1=.故選B.
9.C [解析] 這個空間幾何體直觀圖如圖,其中側(cè)面PAD⊥底面ABCD,側(cè)面中只有△PAB,△PCD為直角三角形,另外兩個是非直角的等腰三角形.
10.
D [解析] 如圖所示是棱長為1的正方體,當(dāng)投影線與平面A
8、1BC1垂直時(shí),因?yàn)槠矫鍭CD1∥平面A1BC1,所以此時(shí)正方體的正投影為一個正六邊形,設(shè)其邊長為a,則a=,所以a=,所以投影面的面積為6××=,此時(shí)投影面積最大.故選D.
11.B [解析] 由三視圖知,空間幾何體是一個圓柱和一個圓臺的組合體.該幾何體的體積為V=π×22×4+π×1(22+12+2×1)=16π+π=π.
12.B [解析] 該物體的上半部分是一個長方體,其長,寬,高分別為15,4,2,體積為15×2×4=120 dm3.下部分是兩個半圓柱,合并起來是一個圓柱,其底面半徑為2,高也是2,故其體積為π×22×2=8π dm3.
故這個物體的體積為(120+8π) dm3.
13.54π [解析] 冰淇淋上半部分是半球,下半部分是圓錐,V=π×33+π×32×12=54π.
14. 3π [解析] 該空間幾何體是底面邊長和高均為1且一條側(cè)棱垂直底面的四棱錐,其體積為×12×1=;這個四棱錐與單位正方體具有相同的外接球,故外接球的半徑為,所以其表面積為4π×=3π.
15. [解析] 根據(jù)已知三角形MON是以O(shè)為直角頂點(diǎn)的直角三角形,故OP==1,即點(diǎn)P的軌跡是以點(diǎn)O為球心的八分之一球面,其與三棱錐的三個側(cè)面圍成的空間幾何體的體積為×=.