2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第5節(jié) 橢圓(第1課時(shí))橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)教學(xué)案 理(含解析)新人教A版
《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第5節(jié) 橢圓(第1課時(shí))橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)教學(xué)案 理(含解析)新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第5節(jié) 橢圓(第1課時(shí))橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)教學(xué)案 理(含解析)新人教A版(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第五節(jié) 橢圓 [考綱傳真] 1.了解橢圓的實(shí)際背景,了解橢圓在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.2.掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì)(范圍、對(duì)稱性、頂點(diǎn)、離心率).3.理解數(shù)形結(jié)合思想.4.了解橢圓的簡(jiǎn)單應(yīng)用. 1.橢圓的定義 (1)平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓.這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距. (2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c為常數(shù)且a>0,c>0. ①當(dāng)2a>|F1F2|時(shí),M點(diǎn)的軌跡為橢圓; ②當(dāng)2a=|F1F2|時(shí),M點(diǎn)的軌跡為線
2、段F1F2; ③當(dāng)2a<|F1F2|時(shí),M點(diǎn)的軌跡不存在. 2.橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì) 標(biāo)準(zhǔn)方程 +=1(a>b>0) +=1(a>b>0) 圖形 性質(zhì) 范圍 -a≤x≤a-b≤y≤b -b≤x≤b-a≤y≤a 對(duì)稱性 對(duì)稱軸:坐標(biāo)軸;對(duì)稱中心:原點(diǎn) 頂點(diǎn) A1(-a,0),A2(a,0),B1(0,-b),B2(0,b) A1(0,-a),A2(0,a), B1(-b,0),B2(b,0) 離心率 e=,且e∈(0,1) a,b,c的關(guān)系 c2=a2-b2 [常用結(jié)論] 1.點(diǎn)P(x0,y0)和橢圓的位置關(guān)系 (1)點(diǎn)P(x0,y0)
3、在橢圓內(nèi)?+<1. (2)點(diǎn)P(x0,y0)在橢圓上?+=1. (3)點(diǎn)P(x0,y0)在橢圓外?+>1. 2.焦點(diǎn)三角形 橢圓上的點(diǎn)P(x0,y0)與兩焦點(diǎn)構(gòu)成的△PF1F2叫做焦點(diǎn)三角形.r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面積為S,則在橢圓+=1(a>b>0)中: (1)當(dāng)r1=r2時(shí),即點(diǎn)P的位置為短軸端點(diǎn)時(shí),θ最大; (2)S=b2tan =c|y0|,當(dāng)|y0|=b時(shí),即點(diǎn)P的位置為短軸端點(diǎn)時(shí),S取最大值,最大值為bc. (3)a-c≤|PF1|≤a+c. 3.橢圓的一個(gè)焦點(diǎn)、中心和短軸的一個(gè)端點(diǎn)構(gòu)成直角三角形,其中a是斜邊長(zhǎng),a2=
4、b2+c2. 4.已知過(guò)焦點(diǎn)F1的弦AB,則△ABF2的周長(zhǎng)為4a. 5.橢圓中點(diǎn)弦的斜率公式 若M(x0,y0)是橢圓+=1(a>b>0)的弦AB(AB不平行y軸)的中點(diǎn),則有kAB·kOM=-,即kAB=-. 6.弦長(zhǎng)公式:直線與圓錐曲線相交所得的弦長(zhǎng) |AB|=|x1-x2| = =|y1-y2|=(k為直線斜率). [基礎(chǔ)自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓.( ) (2)橢圓上一點(diǎn)P與兩焦點(diǎn)F1,F(xiàn)2構(gòu)成△PF1F2的周長(zhǎng)為2a+2c(其中a為橢圓的長(zhǎng)
5、半軸長(zhǎng),c為橢圓的半焦距).( ) (3)橢圓的離心率e越大,橢圓就越圓.( ) (4)關(guān)于x,y的方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲線是橢圓.( ) [答案] (1)× (2)√ (3)× (4)√ 2.橢圓+=1的焦點(diǎn)坐標(biāo)為( ) A.(±3,0) B.(0,±3) C.(±9,0) D.(0,±9) B [由題意可知a2=25,b2=16,∴c2=25-16=9,∴c=±3, 又焦點(diǎn)在y軸上,故焦點(diǎn)坐標(biāo)為(0,±3).] 3.已知?jiǎng)狱c(diǎn)M到兩個(gè)定點(diǎn)A(-2,0),B(2,0)的距離之和為6,則動(dòng)點(diǎn)M的軌跡方程為( ) A.+y2
6、=1 B.+=1 C.+x2=1 D.+=1 D [由題意有6>2+2=4,故點(diǎn)M的軌跡為焦點(diǎn)在x軸上的橢圓,則2a=6,c=2,故a2=9,所以b2=a2-c2=5,故橢圓的方程為+=1,故選D.] 4.若一個(gè)橢圓長(zhǎng)軸的長(zhǎng)、短軸的長(zhǎng)和焦距成等比數(shù)列,則該橢圓的離心率是( ) A. B. C. D. C [由題意有b2=ac.又b2=a2-c2,則a2-c2=ac,即1-2=,則e2+e-1=0,解得e=.因?yàn)?<e<1,所以e=.故選C.] 5.(教材改編)橢圓C:+=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2的直線交橢圓C于A,B兩點(diǎn),則△F1AB的周長(zhǎng)為___
7、_____. 20 [由橢圓的定義可知,△F1AB的周長(zhǎng)為4a=4×5=20.] 第1課時(shí) 橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì) 橢圓的定義及其應(yīng)用 【例1】 (1)已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,動(dòng)圓在圓C1內(nèi)部且和圓C1相內(nèi)切,和圓C2相外切,則動(dòng)圓圓心M的軌跡方程為( ) A.-=1 B.+=1 C.-=1 D.+=1 (2)F1,F(xiàn)2是橢圓+=1的兩個(gè)焦點(diǎn),A為橢圓上一點(diǎn),且∠AF1F2=45°,則△AF1F2的面積為( ) A.7 B. C. D. (1)D (2)C [(1)設(shè)圓M的半徑為r,則
8、|MC1|+|MC2|=(13-r)+(3+r)=16,又|C1C2|=8<16,∴動(dòng)圓圓心M的軌跡是以C1,C2為焦點(diǎn)的橢圓,且2a=16,2c=8,則a=8,c=4,∴b2=48,故所求的軌跡方程為+=1. (2)由題意得a=3,b=,c=, ∴|F1F2|=2,|AF1|+|AF2|=6. ∵|AF2|2=|AF1|2+|F1F2|2-2|AF1|·|F1F2|cos 45°=|AF1|2-4|AF1|+8, ∴(6-|AF1|)2=|AF1|2-4|AF1|+8. ∴|AF1|=,∴S△AF1F2=××2×=.] [規(guī)律方法] 1.橢圓定義的應(yīng)用主要有兩個(gè)方面:一是判定平面
9、內(nèi)動(dòng)點(diǎn)的軌跡是否為橢圓;二是利用定義求焦點(diǎn)三角形的周長(zhǎng)、面積、弦長(zhǎng)、最值和離心率等. 2.橢圓的定義式必須滿足2a>|F1F2|. (1)如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是( ) A.橢圓 B.雙曲線 C.拋物線 D.圓 (2)(2019·徐州模擬)已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的兩個(gè)焦點(diǎn),P為橢圓C上的一點(diǎn),且PF1⊥PF2,若△PF1F2的面積為9,則b=________. (1)A (2)3 [(1)由題意可知,CD是線段MF的垂直
10、平分線, ∴|MP|=|PF|, ∴|PF|+|PO|=|PM|+|PO|=|MO|(定值). 又|MO|>|FO|, ∴點(diǎn)P的軌跡是以F,O為焦點(diǎn)的橢圓,故選A. (2)設(shè)|PF1|=r1,|PF2|=r2, 則所以2r1r2=(r1+r2)2-(r+r)=4a2-4c2=4b2,所以S△PF1F2=r1r2=b2=9,所以b=3.] 橢圓的標(biāo)準(zhǔn)方程 【例2】 (1)在△ABC中,A(-4,0),B(4,0),△ABC的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是( ) A.+=1(y≠0) B.+=1(y≠0) C.+=1(y≠0) D.+=1(y≠0) (2)
11、已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過(guò)兩點(diǎn),(,),則橢圓方程為________. (3)過(guò)點(diǎn)(,-),且與橢圓+=1有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程為________. (1)A (2)+=1 (3)+=1 [(1)由|AC|+|BC|=18-8=10>8知,頂點(diǎn)C的軌跡是以A,B為焦點(diǎn)的橢圓(A,B,C不共線).設(shè)其方程為+=1(a>b>0),則a=5,c=4,從而b=3.由A,B,C不共線知y≠0.故頂點(diǎn)C的軌跡方程是+=1(y≠0). (2)設(shè)橢圓方程為mx2+ny2=1(m,n>0,m≠n). 由 解得m=,n=. ∴橢圓方程為+=1. (3)法一:橢圓+=1的焦點(diǎn)為
12、(0,-4),(0,4),即c=4. 由橢圓的定義知, 2a=+, 解得a=2. 由c2=a2-b2可得b2=4, ∴所求橢圓的標(biāo)準(zhǔn)方程為+=1. 法二:∵所求橢圓與橢圓+=1的焦點(diǎn)相同, ∴其焦點(diǎn)在y軸上,且c2=25-9=16. 設(shè)它的標(biāo)準(zhǔn)方程為+=1(a>b>0). ∵c2=16,且c2=a2-b2, 故a2-b2=16.① 又點(diǎn)(,-)在所求橢圓上, ∴+=1, 則+=1.② 由①②得b2=4,a2=20, ∴所求橢圓的標(biāo)準(zhǔn)方程為+=1.] [規(guī)律方法] (1)求橢圓的標(biāo)準(zhǔn)方程多采用定義法和待定系數(shù)法. (2)利用定義法求橢圓方程,要注意條件2a>|F
13、1F2|;利用待定系數(shù)法要先定形(焦點(diǎn)位置),再定量,也可把橢圓方程設(shè)為mx2+ny2=1(m>0,n>0,m≠n)的形式. (1)已知橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,過(guò)F2的直線l交C于A,B兩點(diǎn),若△AF1B的周長(zhǎng)為4,則C的方程為( ) A.+=1 B.+y2=1 C.+=1 D.+=1 (2)橢圓E的焦點(diǎn)在x軸上,中心在原點(diǎn),其短軸上的兩個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)恰為邊長(zhǎng)是2的正方形的頂點(diǎn),則橢圓E的標(biāo)準(zhǔn)方程為( ) A.+=1 B.+y2=1 C.+=1 D.+=1 (3)設(shè)F1,F(xiàn)2分別是橢圓E:x2+=1(0<b<1)
14、的左、右焦點(diǎn),過(guò)點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn).若|AF1|=3|F1B|,AF2⊥x軸,則橢圓E的方程為________. (1)A (2)C (3)x2+y2=1 [(1)△AF1B的周長(zhǎng)是4a=4, 所以a=,e==, 所以c=1, 那么b2=a2-c2=2, 所以方程是+=1.故選A. (2)由條件可知b=c=,a=2,所以橢圓方程為+=1,故選C. (3)不妨設(shè)點(diǎn)A在第一象限,如圖所示. ∵AF2⊥x軸,∴A(c,b2)(其中c2=1-b2,0<b<1,c>0). 又∵|AF1|=3|F1B|, ∴由=3得B, 代入x2+=1得+=1. 又c2=1-b2,
15、∴b2=. 故橢圓E的方程為x2+y2=1.] 橢圓的幾何性質(zhì) ?考法1 求離心率或范圍 【例3】 (1)(2019·深圳模擬)設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為( ) A. B. C. D. (2)(2017·全國(guó)卷Ⅰ)設(shè)A,B是橢圓C:+=1長(zhǎng)軸的兩個(gè)端點(diǎn),若C上存在點(diǎn)M滿足∠AMB=120°,則m的取值范圍是( ) A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,]∪[4,+∞) (1)D (2
16、)A [(1)法一:如圖,在Rt△PF2F1中, ∠PF1F2=30°,|F1F2|=2c, ∴|PF1|==, |PF2|=2c·tan 30°=. ∵|PF1|+|PF2|=2a, 即+=2a,可得c=a. ∴e==. 法二:(特殊值法)在Rt△PF2F1中 ,令|PF2|=1, ∵∠PF1F2=30°, ∴|PF1|=2,|F1F2|=. ∴e===.故選D. (2)由題意知,當(dāng)M在短軸頂點(diǎn)時(shí),∠AMB最大. ①如圖1,當(dāng)焦點(diǎn)在x軸,即m<3時(shí), a=,b=,tan α=≥tan 60°=,∴0<m≤1. 圖1 圖2 ②如圖2,當(dāng)焦點(diǎn)在y軸,即m>
17、3時(shí), a=,b=,tan α=≥tan 60°=,∴m≥9. 綜上,m∈(0,1]∪[9,+∞),故選A.] ?考法2 與橢圓幾何性質(zhì)有關(guān)的范圍問題 【例4】 (2019·合肥質(zhì)檢)如圖,焦點(diǎn)在x軸上的橢圓+=1的離心率e=,F(xiàn),A分別是橢圓的一個(gè)焦點(diǎn)和頂點(diǎn),P是橢圓上任意一點(diǎn),則·的最大值為________. 4 [由題意知a=2,因?yàn)閑==,所以c=1,b2=a2-c2=3.故橢圓方程為+=1. 設(shè)P點(diǎn)坐標(biāo)為(x0,y0).所以-2≤x0≤2,-≤y0≤. 因?yàn)镕(-1,0),A(2,0), =(-1-x0,-y0),=(2-x0,-y0), 所以·=x-x0-2+y=
18、x-x0+1=(x0-2)2. 則當(dāng)x0=-2時(shí),·取得最大值4.] [規(guī)律方法] (1)求橢圓離心率的方法,①直接求出a,c的值,利用離心率公式直接求解.,②列出含有a,b,c的齊次方程(或不等式),借助于b2=a2-c2消去b,轉(zhuǎn)化為含有e的方程(或不等式)求解. (2)利用橢圓幾何性質(zhì)求值或范圍的思路,求解與橢圓幾何性質(zhì)有關(guān)的參數(shù)問題時(shí),要結(jié)合圖形進(jìn)行分析,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、長(zhǎng)軸、短軸等橢圓的基本量時(shí),要理清它們之間的關(guān)系.建立關(guān)于a、b、c的方程或不等式. (1)(2018·全國(guó)卷Ⅱ)已知F1,F(xiàn)2是橢圓C的兩個(gè)焦點(diǎn),P是C上的一點(diǎn).若PF1⊥PF2,且∠PF2F1=60°
19、,則C的離心率為( ) A.1- B.2- C. D.-1 (2)若點(diǎn)O和點(diǎn)F分別為橢圓+=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則·的最大值為( ) A.2 B.3 C.6 D.8 (1)D (2)C [(1)由題設(shè)知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,所以|PF2|=c,|PF1|=c.由橢圓的定義得|PF1|+|PF2|=2a,即c+c=2a,所以(+1)c=2a,故橢圓C的離心率e===-1.故選D. (2)由橢圓+=1可得F(-1,0),點(diǎn)O(0,0),設(shè)P(x,y)(-2≤x≤2), 則·=x2+x+y2=x2+x
20、+3=x2+x+3=(x+2)2+2,-2≤x≤2, 當(dāng)且僅當(dāng)x=2時(shí),·取得最大值6.] 1.(2018·全國(guó)卷Ⅱ)已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的左、右焦點(diǎn),A是C的左頂點(diǎn),點(diǎn)P在過(guò)A且斜率為的直線上,△PF1F2為等腰三角形,∠F1F2P=120°,則C的離心率為( ) A. B. C. D. D [由題意可得橢圓的焦點(diǎn)在x軸上,如圖所示,設(shè)|F1F2|=2c,∵△PF1F2為等腰三角形,且∠F1F2P=120°,∴|PF2|=|F1F2|=2c.∵|OF2|=c,∴點(diǎn)P坐標(biāo)為(c+2ccos 60°,2csin 60°),即點(diǎn)P(2c,c).∵點(diǎn)P在過(guò)點(diǎn)A,且斜率為的直線上,∴=,解得=,∴e=,故選D.] 2.(2016·全國(guó)卷Ⅰ)直線l經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),若橢圓中心到l的距離為其短軸長(zhǎng)的,則該橢圓的離心率為( ) A. B. C. D. B [如圖,|OB|為橢圓中心到l的距離,則|OA|·|OF|=|AF|·|OB|,即bc=a·,所以e==.] - 10 -
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 領(lǐng)導(dǎo)班子2024年度民主生活會(huì)對(duì)照檢查材料范文(三篇)
- 金融工作主題黨課講稿范文(匯編)
- 鍋爐必備學(xué)習(xí)材料
- 鍋爐設(shè)備的檢修
- 主題黨課講稿:走中國(guó)特色金融發(fā)展之路加快建設(shè)金融強(qiáng)國(guó)(范文)
- 鍋爐基礎(chǔ)知識(shí):?jiǎn)t注意事項(xiàng)技術(shù)問答題
- 領(lǐng)導(dǎo)班子2024年度民主生活會(huì)“四個(gè)帶頭”對(duì)照檢查材料范文(三篇)
- 正常運(yùn)行時(shí)影響鍋爐汽溫的因素和調(diào)整方法
- 3.鍋爐檢修模擬考試復(fù)習(xí)題含答案
- 司爐作業(yè)人員模擬考試試卷含答案-2
- 3.鍋爐閥門模擬考試復(fù)習(xí)題含答案
- 某公司鍋爐安全檢查表
- 3.工業(yè)鍋爐司爐模擬考試題庫(kù)試卷含答案
- 4.司爐工考試題含答案解析
- 發(fā)電廠鍋爐的運(yùn)行監(jiān)視和調(diào)整