將遠程處理屬性應用于ITER中性梁單元單軌吊外文文獻翻譯、中英文翻譯、外文翻譯
將遠程處理屬性應用于ITER中性梁單元單軌吊外文文獻翻譯、中英文翻譯、外文翻譯,遠程,處理,屬性,應用于,ITER,中性,單元,單軌,外文,文獻,翻譯,中英文
Applying remote handling attributes to the ITER neutral beam cell monorail crane
a b s t r a c t
The maintenance requirements for the equipment in the ITER neutral beam cell require components to be lifted and transported within the cell by remote means. To meet this requirement, the provision of an overhead crane with remote handling capabilities has been initiated. The layout of the cell has driven the design to consist of a monorail crane that travels on a branched monorail track attached to the cell ceiling.
This paper describes the principle design constraints and how the remote handling attributes were applied to the concept design of the monorail crane, concentrating on areas where novel design solutions have been required and on the remote recovery requirements and solutions.
1. Introduction
The monorail crane forms part of the ITER neutral beam cell remote handling system, for which the conceptual design review has just been completed. The status of the system design by CCFE is the subject of a paper presented at the SOFT 2012 conference.
The monorail crane is the principal transporter for all plant and equipment within the neutral beam cell and is used during installation and maintenance. The cell contains up to 3 heating neutral beams, a diagnostic neutral beam and 4 upper ports.
The neutral beam cell contains a series of pillars to support the upper floors ofthe Tokamak building. These pillars preclude the use of an X-Y bridge crane. An overhead monorail crane is therefore proposed in the concept design, based on the IBERTEF reference design and is described in detail in the ITER concept Design Description Document.
A summary of the remote handling attributes applied to the concept design is presented in this paper.
1.1. Principal design constraints
The safe working load of the crane is 50 t
Virtual reality simulations of the crane operations show that the highest hook heights are required when the tall beam linecomponents, such as the calorimeter and residual ion dump, are lifted over the balcony plates.
The height of the components and the distance between the balcony plates and the cell ceiling imposes a tight constraint on the maximum height of the crane. It is a maximum of 1400 mm when adhering to the minimum clearance of 100 mm applied to all remote crane operations.
The crane requires a four rope lift to accommodate small offcentre loads and to allow accurate position control of components during lifting and lowering. This ensures correct engagement with remote alignment and location features such as dowels. When shielding or containment barriers have been removed during maintenance, personnel access to the neutral beam cell will not be possible. The crane must therefore be operable and recoverable entirely remotely
The safety case requires the crane to retain its load during a seismic level 2 (SL-2) event.
The ITER system requirements for the concept design ofthe neutral beam cell remote handling equipment requires that all remote handling equipment be recoverable by credible means and for all components to have a minimum radiation tolerance of 20 kGy.
1.2. Design overview
The monorail crane is shown in Fig. 1 transporting the calorimeter. The crane system comprises;the monorail, upon which run two bogies that are mounted to the crane frame. The crane frame supports four hoist assemblies that raise and lower the lifting frame. Each ofthese assemblies is described in more detail in the following sections.
Fig. 1. Monorail crane system
2. Monorail
The neutral beam cell monorail is shown in red (Fig. 2). At the top ofthe figure,the monorailtrack passes behind the three heating neutral beam lines and at the bottom it passes above the front end components and has branches to pass over each ofthe three heating beam lines.(For interpretation ofthe references to color in this text, the reader is referred to the web version of the article.)
Fig. 2 Plan view on the neutral beam cell
Seven sets of switches allow the crane to move between the different branches ofthe monorail. The switches run on linear slides driven from the level 3 high voltage deck above.
The monorail design is shown in Fig. 3. It comprises a main central I beam with stabilizer rails to each side to react eccentric loads. These are attached to cross-beams, mounted to plates embedded in the cell ceiling.
The two stabilizer rails contain bus bar electrical lines that connectto the crane via multiple pick-ups on the crane bogies to ensure pick-up when crossing switches and to provide redundancy. The bus bars can carry power and signal communication.
3. Bogies
Two bogies support the crane on the monorail with a total of four independent drives.
Each bogey has two stabilizer wheels with Ackermann steering and spring loading to maintain constant contact with the stabilizer rails and four conductor bus pick-up assemblies based on the Demag DCL system to supply power and signals to the crane.
Fig. 3 Monorail arrangement
Fig. 4 Hoist assembly arrangement
4. Hoists
The crane has four independent hoist assemblies, mounted to the crane frame. The assembly comprises; rope drum, drives and brakes, shown in red in Fig. 4. (For interpretation of the references to color in this text, the reader is referred to the web version of the article.)
Due to the restricted vertical height of the crane, the rope drum diameter was limited to 450 mm. Single ropes with suitable breaking loads cannot be wound round such a small drum so four rope drops are used on each drum. The rope selected is an 18 mm diameter Diepa H50, compacted strand wire rope.
The hoist drive requires a large speed range to achieve both the operational efficiency requirements and the controlled engagement of components. A Demag 20 kW conical rotor motor with integrated 2 kW creep motor and duty brake meets theserequirements, coupled to a 226:1 three stage planetary gearbox packaged as one assembly inside the rope drum.
The European Standard for crane safety and general design [4] requires an emergency brake that acts directly on the drum. The diameter of a standard disc brake design is too large to fit in the restricted vertical height of the crane so a conical brake has been used at one end of each rope drum, actuated by disc springs and disengaged with a standard crane emergency brake electromagnetic actuator by Stromag (Fig. 5).
Fig. 5 Conical brake and actuator arrangement
5. Lifting frame
The lifting frame provides the standard lifting interface between the crane and components and it interfaces with lifting adaptors in operations where components require additional motions or a non-standard lifting interface (Fig. 6).
Fig. 6 Lifting frame arrangement
Fig. 7 Twist-lock arrangement
5.1. Twist-locks
Mechanical engagement is provided by four twist-locks conforming to international standards (Fig. 7).
The twist-locks provide alignment during attachment of the lifting frame. They have external drive connections that can be driven by a tool deployed by any of the cell manipulators in case of motor failure. The entire twist-lock assembly can also be replaced remotely.
5.2. Equalizer blocks
The lifting frame is suspended from the crane ropes which pass through equalizer blocks at each corner of the frame.
rough equalizer blocks at each corner of the frame. Within each equalizer block the ropes pass around pulleys on each end of a rocker bar to ensure equal tension in each of the four rope drops, even if the rope creep rate or extension under load varies between drops.
6. Control
Feedback available to the operator will include the position along the rail, derived from the voltage drop in a special conductor in the conductor bar and the load height derived from resolvers on the hoist motors. The hoist motors will be driven to maintain a level lifting frame derived from inclinometers mounted on the frame
A unique umbilical control connection to the crane is not possible because the track does not have a single origin and there is no space in the cell for a reel or festoon. Three other options have been considered for the concept design and these are described below.
6.1. CAN bus
This option uses additional bars in the Demag DCL conductor bar power transmission system described above to transmit CAN bus communication signals.
The system is commonly used on production lines butis susceptible to noise and it has a relatively low bandwidth, preventing the use of video cameras on the crane or lifting frame
The CAN bus system requires onboard processing. Radiation tolerance ofthe processors is a potential issue. Commercial components are available with radiation tolerance levels up to a few kGy but they are expensive.
The requirement specification states a minimum tolerance of 20 kGy. The actual dose received by the crane is likely to be much lower than this but some shielding may be required.
6.2. Wireless transmission
This option uses radio signals to send and receive control communication. It has similar issues to the CAN bus system in requiring onboard electronics and has a susceptibility to noise.
The wireless transmission system is being considered for use with the ITER cask transfer system and would therefore have reduced development costs and risk and there would be commonality between the ITER control systems.
6.3. Discrete plug-in points
This option uses the DCL power bus connections to directly drive the crane to discrete points along the monorail where it can remotely connect to control plug-in points adjacent to the track. The two independent bus bars, each with four pickups on the crane provides high redundancy to ensure a continuous power connection.
Flexibility in the connection between the crane and the plug-in point could allow the crane to move a metre or so in either direction along the monorail whilst plugged in. However, a large number of plug-in points would be required and some flexibility of the design would be lost making this option only necessary if neither of the other two options can be developed into viable systems.
7. Recovery
To achieve the required availability of the ITER neutral beam systems, high reliability components, redundancy, condition monitoring and regular maintenance will be required to ensure the crane is suitably reliable.
Fig. 8 The crane at the recovery hoist position and at the transfer table, rotated through 90? on the stillage to fit into a transfer cask
In the event of failure when shielding or containment barriers have been removed, remote recovery must be possible. This is achieved with a number of systems, including (Fig. 8):
1. The ability to lift a load on two out of the four hoists in the event that one hoist seizes.
2. Torque limiters on the monorail drives to allow the crane to return to the transfer area with one drive seized.
3. Dexterous manipulation is available at a number of locations in cell, including at the cask transfer area to allow recovery, release or repair of failed components.
4. A recovery hoist system to lower a section of monorail and the crane onto a stillage for removal, in a cask, to the hot cell for maintenance.
The recovery hoist system will provide the preferred method of access to the crane for planned and unplanned maintenance, whether or not personnel access is possible.
8. Seismic loads
The crane is required not to drop its load during a seismic level 2 (SL-2) event. The crane is also required to provide a credible recovery scenario for other remote handling equipment in the cell following such an event. To this end, the crane has been designed to withstand the event without unrecoverable damage
The variable natural frequency of the load suspended from the crane due to the varying length of rope during a lift means that for most heavy lifts, there is a point where the natural frequency will match that of the building response to a seismic event. Under these circumstances, during an SL-2 event, the acceleration of the mass would exceed gravity.
When the upward acceleration of the load on the rope exceeds gravity a non-linear slack rope condition arises, where higher rope tensions are seen when the rope becomes taut again, compared to the loads that would be seen if the rope acted as a spring.
Transient dynamic analysis was performed using an iterative small time step calculation on a one-dimensional system to show the maximum rope loads for a range of rope lengths and seismic input frequency. The effects of varying rope stiffness and damping was also investigated.
was also investigated. It was found that the maximum rope load for the non-linear system was about 1/3 higher than that for a linear system where the ropes acted as springs.
Structural analysis showed some strengthening ofthe crane and lifting frame was required to withstand the additional load and that the loads on the building interface were high.
Additional work was carried out to strengthen the crane and to add flexible mounts between the cross-beams and the building interface points to spread the crane load over more building interface points.
Further analysis will be required using more comprehensive input movement data and a multi-degree of freedom model to consider also the effects of a rotating and off-centre load.
9. Conclusions
A feasible concept design with all the required remote handling attributes has been achieved that meets the system requirements.
Considerable work remains for the preliminary design stage due to the novel nature of some areas of the design, most notably the hoist and control system and also in demonstrating that the requirements of the safety case have been met.
Common design principles and designs should also be implemented where ever possible between all ITER remote handling systems.
References
[1] N. Sykes (CCFE), Status of ITER neutral beam cell remote handling system, Fusion Engineering and Design (SOFT 2012) (2012).
[2] G. Taubmann (IBERTEF), Design of an overhead crane for the ITER NB cell remote handling maintenance operations, Fusion Engineering and Design June (2009) s1827–s1833.
[3] ITER Design Description Documentfor the Monorail Crane, ITER Document Management Unique ID 9YCL9N.
[4] European Standard EN 13001-2:2011, Crane Safety, General Design, Load Actions.
[5] ISO 1161:1984, Series 1 Freight Containers – Corner fittings – Specification.
將遠程處理屬性應用于ITER中性梁單元單軌吊
摘要:ITER中性梁單元中設備的維護要求要求通過遠程方式在單元內提升和運輸組件。 為了滿足該要求,已經(jīng)開始提供具有遠程處理能力的橋式起重機。 單元的布局促使設計包括單軌起重機,該起重機在連接到單元天花板的分支單軌軌道上行駛。
本文介紹了原理設計約束條件以及如何將遠程處理屬性應用于單軌起重機的概念設計,重點介紹了需要新穎設計解決方案的領域以及遠程恢復要求和解決方案。
1.前言
單軌起重機是ITER中性梁單元遠程處理系統(tǒng)的一部分,其概念設計審查剛剛完成。 CCFE的系統(tǒng)設計狀態(tài)是SOFT 2012會議上發(fā)表的一篇論文的主題。
單軌起重機是中性梁單元內所有工廠和設備的主要運輸工具,在安裝和維護期間使用。 該單元最多包含3個加熱中性束,一個診斷中性束和4個上部端口。
中性梁單元包含一系列支柱,以支撐托卡馬克大樓的高層。 這些支柱無法使用X-Y橋式起重機。 因此,在概念設計中基于IBERTEF參考設計[2]提出了一種高架單軌起重機,并在ITER概念設計說明文檔[3]中對其進行了詳細描述。
本文概述了應用于概念設計的遠程處理屬性。
1.1.主要設計約束
起重機的安全工作負荷為50噸
起重機操作的虛擬現(xiàn)實仿真表明,當將高熱量束線組件(例如熱量計和殘留的離子傾倒物)提升到陽臺板上時,需要最高的吊鉤高度。
組件的高度以及陽臺板與單元天花板之間的距離對起重機的最大高度施加了嚴格的約束。 堅持適用于所有遠程起重機操作的最小100毫米間隙時,最大長度為1400毫米。
該起重機需要四根繩索提升機,以適應較小的偏心載荷,并允許在提升和降低過程中對組件進行精確的位置控制。 這樣可以確保與遠程對準和定位功能(例如定位銷)正確接合。 如果在維護過程中移除了屏蔽層或安全殼屏障,則人員將無法接近中性梁單元。 因此,起重機必須完全可以遠程操作和恢復。
安全情況要求起重機在2級地震(SL-2)事件中保持載荷。
ITER對中性束電池遙控設備概念設計的系統(tǒng)要求,要求所有遙控設備都可以通過可靠的手段進行回收,并且所有組件的最小輻射容限為20 kGy。
1.2.設計概述
圖1所示為運輸熱量計的單軌起重機。 起重機系統(tǒng)包括單軌,在其上運行兩個轉向架,兩個轉向架安裝在起重機框架上。 起重機框架支撐著四個提升和降低提升框架的起重機組件。 在以下各節(jié)中將更詳細地描述這些組件中的每一個。
圖1 單軌起重機系統(tǒng)
2.單軌
中性束單元單軌列車以紅色顯示(圖2)。 在圖的頂部,單軌鐵路通過三條加熱中性線束后方,在底部通過前端組件上方,并有分支穿過三條加熱中線中的每一條。
七組開關允許起重機在單軌的不同分支之間移動。 開關在線性滑軌上運行,該滑軌由上方的3級高壓平臺驅動。
單軌設計如圖3所示。它包括一個主要的中央I型梁,每側都有穩(wěn)定桿,以抵抗偏心載荷。 它們固定在橫梁上,橫梁安裝在嵌在天花板上的板上。
這兩個穩(wěn)定器導軌包含匯流條電線,這些電線通過起重機轉向架上的多個拾取器連接到起重機,以確保如圖3所示。 圖4.提升機組件的布置。 跨接交換機時接機并提供冗余。 母線可以承載電源和信號通信。
3.轉向架
兩個轉向架通過總共四個獨立的驅動器將起重機支撐在單軌上。
每個柏忌都有兩個帶有阿克曼轉向系統(tǒng)的穩(wěn)定器輪和彈簧負載,以保持與穩(wěn)定器導軌的恒定接觸,以及四個基于Demag DCL系統(tǒng)的導體母線拾取組件,以向起重機供電和提供信號。
圖2.中性梁單元的平面圖
圖3.單軌布置
4.提升機
起重機具有四個獨立的提升組件,安裝在起重機框架上。 該組件包括: 繩索鼓,驅動器和制動器,在圖4中以紅色顯示。
由于起重機的垂直高度受到限制,鋼絲繩卷筒直徑限制為450毫米。 具有合適折斷載荷的單根繩索無法纏繞在如此小的滾筒上,因此每個滾筒上要使用四個繩索降落。 選擇的繩索是直徑為18 mm的Diepa H50壓實絞合鋼絲繩。
提升驅動器需要較大的速度范圍,才能達到運行效率要求和部件的受控接合。 配有集成的2 kW蠕動電機和占空制動器的Demag 20 kW錐形轉子電機可以滿足這些要求,并與一個226:1的三級行星齒輪箱組合在一起,作為一個組件包裝在鋼絲繩內。
起重機安全和總體設計的歐洲標準[4]要求緊急制動器直接作用在滾筒上。 標準盤式制動器設計的直徑太大,無法適應起重機限制的垂直高度,因此,在每個繩盤的一端使用了錐形制動器,由盤形彈簧致動,并與標準起重機緊急制動器電磁致動器脫開 由Stromag制作(圖5)。
圖4.提升機組件的布置
圖5 圓錐形制動器和執(zhí)行器的布置
5.升降架
舉升架在起重機和部件之間提供標準的舉升接口,并且在部件需要額外運動或非標準舉升接口的操作中,它與舉升適配器接口(圖6)
圖6 升降框架的布置
圖7 扭鎖裝置
5.1.扭鎖
機械接合由四個符合國際標準的扭鎖提供(圖7)。
扭鎖在提升框架的安裝過程中提供對準。 它們具有外部驅動器連接,在發(fā)生電動機故障時,可以由任何單元操縱器部署的工具來驅動外部驅動器連接。 整個扭鎖組件也可以遠程更換。
5.2.均衡器塊
舉升架懸掛在起重機的繩索上,而起重機的繩索則通過框架各角的平衡塊。
框架每個角上的粗略均衡器塊。 在每個平衡塊內,繩索繞過搖桿兩端的滑輪,以確保四個繩索降落中的每個繩索均具有相同的張力,即使繩索在負載下的蠕變速率或延伸量在兩個降落之間也有所不同。
6.控制
對操作員可用的反饋包括沿導軌的位置,該位置由導體條中特殊導體中的電壓降得出,而負載高度則由起重電機上的旋轉變壓器得出。 提升電機將被驅動以保持水平升降框架,該水平升降框架源自安裝在框架上的傾角儀。
由于軌道沒有單一的原點,并且在單元中沒有用于存放卷軸或花彩的空間,因此無法實現(xiàn)與起重機的唯一臍帶控制連接。 對于概念設計,已經(jīng)考慮了其他三個選項,下面將對這些選項進行描述。
6.1. CAN bus
此選項使用上述Demag DCL導體棒電力傳輸系統(tǒng)中的附加棒來傳輸CAN總線通信信號。
該系統(tǒng)通常在生產(chǎn)線上使用,但易受噪聲影響,并且?guī)捪鄬^低,因此無法在吊車或提升架上使用攝像機
CAN總線系統(tǒng)需要車載處理。 處理器的輻射容忍度是一個潛在的問題。 市售的組件可承受的輻射容忍度高達幾千kGy,但價格昂貴。
要求規(guī)范規(guī)定最小公差為20 kGy。起重機接收到的實際劑量可能遠低于此值,但可能需要一些屏蔽。
6.2.?無線傳輸
此選項使用無線電信號發(fā)送和接收控制通信。 在需要車載電子設備時,它與CAN總線系統(tǒng)存在類似的問題,并且容易受到噪聲的影響。
目前正在考慮將無線傳輸系統(tǒng)與ITER容器傳輸系統(tǒng)一起使用,因此可以降低開發(fā)成本和風險,并且ITER控制系統(tǒng)之間將具有共性。
6.3.?離散插件點
該選項使用DCL電源總線連接直接將起重機驅動到單軌上的離散點,在這里它可以遠程連接到與軌道相鄰的控制插入點。 起重機上的兩個獨立母線(每個帶有四個皮卡)可提供高冗余度,以確保連續(xù)的電源連接。
起重機與插入點之間的連接靈活性可以使起重機在插入時沿單軌在任一方向上移動一個儀表左右。但是,將需要大量的插入點,并且需要一定的靈活性。 僅當其他兩個選項都不能開發(fā)成可行的系統(tǒng)時,該選項的設計才會丟失。
7恢復
為實現(xiàn)ITER中性束系統(tǒng)所需的可用性,需要高可靠性組件、冗余、狀態(tài)監(jiān)測和定期維護,以確保起重機具有適當?shù)目煽啃浴?
圖8 起重機在回收提升機位置和轉運臺上,在釜上旋轉90°,以裝入轉運桶中
如果發(fā)生故障,移除了屏蔽層或隔離層,則必須能夠進行遠程恢復。 這可以通過許多系統(tǒng)來實現(xiàn),包括(圖8):
1在一臺起重機卡住的情況下,四臺起重機中的兩臺能夠提升負載。
2單軌驅動裝置上的扭矩限制器,允許起重機在一個驅動裝置卡住的情況下返回傳輸區(qū)域。
3在許多位置都可以進行靈巧的操縱,包括在轉移區(qū),以便恢復,釋放或修理故障部件。
4.一種回收升降機系統(tǒng),用于將單軌和起重機的一部分降低到靜止狀態(tài),以便進行維護。
無論是否有人員進入,恢復提升系統(tǒng)將為計劃內和計劃外維護提供進入起重機的首選方法。
8地震荷載
要求起重機在2級地震(SL-2)事件中不要掉落負荷。 發(fā)生此類事件后,還需要起重機為牢房中的其他遠程處理設備提供可靠的恢復方案。 為此,起重機的設計能夠承受事故而不會造成不可挽回的損壞
由于在提升過程中繩索長度的變化,從起重機上吊下來的負載的固有頻率是可變的,這意味著對于大多數(shù)重型電梯而言,存在一個固有頻率將與建筑物對地震事件的響應相匹配的點。 在這種情況下,在SL-2事件期間,質量的加速度將超過重力
當繩索上負載的向上加速度超過重力時,會出現(xiàn)非線性松弛繩索狀況,與繩索充當彈簧時所看到的負載相比,繩索再次繃緊時會出現(xiàn)更高的繩索張力。
在一維系統(tǒng)上使用迭代小時間步長計算進行了瞬態(tài)動力學分析,以顯示一定范圍的繩索長度和地震輸入頻率下的最大繩索負載。 還研究了變化的繩索剛度和阻尼的影響。
也進行了調查。結果表明,非線性系統(tǒng)的最大繩載荷比線性系統(tǒng)的最大繩載荷高1/3左右。
結構分析表明,需要對起重機和起重框架進行一些加固,以承受額外荷載,并且建筑界面上的荷載較高。
另外還進行了加固起重機的工作,并在橫梁和建筑接口點之間增加了柔性安裝件,以便將起重機荷載分散到更多的建筑接口點上。
需要使用更全面的輸入運動數(shù)據(jù)和多自由度模型進行進一步分析,以考慮旋轉和偏心載荷的影響。
9結論
實現(xiàn)了一種可行的概念設計,滿足了系統(tǒng)要求,實現(xiàn)了所有所需的遠程處理屬性。
由于設計中某些領域的新穎性,尤其是提升和控制系統(tǒng)的新穎性,以及表明已滿足安全案例的要求,因此在初步設計階段仍需進行大量工作。
在可能的情況下,所有ITER遠程處理系統(tǒng)之間也應實施共同的設計原則和設計。
參考文獻
[1] N.?Sykes(CCFE),ITER中性束細胞遠程處理系統(tǒng)的現(xiàn)狀,融合工程與設計(SOFT 2012)(2012)。
[2] G.?Taubmann(IBERTEF),用于ITER NB電池遠程處理維護操作的橋式起重機的設計,《融合工程與設計》,2009年6月(s1827–s1833)。
[3] ITER單軌起重機的設計說明文檔,ITER文檔管理唯一ID 9YCL9N。
[4]歐洲標準EN 13001-2:2011,起重機安全,通用設計,載荷作用。
[5] ISO 1161:1984,系列1貨運集裝箱–角配件–規(guī)范。
18
收藏