研究全板簧在級(jí)進(jìn)連鑄模中的振蕩機(jī)制外文文獻(xiàn)翻譯、中英文翻譯、外文翻譯
研究全板簧在級(jí)進(jìn)連鑄模中的振蕩機(jī)制外文文獻(xiàn)翻譯、中英文翻譯、外文翻譯,研究,全板簧,級(jí)進(jìn)連,鑄模,中的,振蕩,機(jī)制,外文,文獻(xiàn),翻譯,中英文
附錄一
研究全板簧在級(jí)進(jìn)連鑄模中的振蕩機(jī)制
L.-P. Zhang*1, X.-K. Li2, Y.-F. Yao2and L.-D. Yang3
一種級(jí)聯(lián)全板簧機(jī)構(gòu)設(shè)計(jì)方法被提出,這是在連續(xù)鑄造模具的一個(gè)新的振動(dòng)導(dǎo)向裝置。然后,本文設(shè)計(jì)的原型是在實(shí)驗(yàn)室中產(chǎn)生的,其運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)仿真分析的基礎(chǔ)上進(jìn)行了嚴(yán)格的–剛?cè)狁詈系奶摂M模型。對(duì)模具的位移和速度的仿真曲線與理想值基本一致,從而驗(yàn)證了本文建立的模型是合理的。此外,通過(guò)動(dòng)力學(xué)仿真計(jì)算固有頻率和振型的機(jī)制,和受力鋼板彈簧和旋轉(zhuǎn)接頭,分析和研究了基本參數(shù)對(duì)這些力量的影響,從而建立該機(jī)制下的進(jìn)一步研究和應(yīng)用的基礎(chǔ)。
關(guān)鍵詞:連續(xù)鑄造,模具,級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu),設(shè)計(jì)方法,動(dòng)力學(xué)分析
簡(jiǎn)介:對(duì)結(jié)晶器振動(dòng)系統(tǒng)是現(xiàn)代連鑄技術(shù)的關(guān)鍵設(shè)備,其技術(shù)性能和可靠性直接影響連鑄坯的產(chǎn)量和質(zhì)量。振動(dòng)系統(tǒng)由振動(dòng)發(fā)生裝置和導(dǎo)向機(jī)構(gòu),后者是本文研究連鑄過(guò)程中,振動(dòng)導(dǎo)向機(jī)構(gòu)在模具的運(yùn)動(dòng)起著指導(dǎo)作用。只有當(dāng)模具沿著正確的軌道,該股可以保證質(zhì)量。所以鏈需要對(duì)模具振動(dòng)導(dǎo)向機(jī)構(gòu)很高的制導(dǎo)精度,但對(duì)于軸承的間隙和磨損不可避免,四偏心軸和連桿振動(dòng)機(jī)構(gòu)廣泛應(yīng)用于現(xiàn)代鑄造模具的運(yùn)動(dòng)將導(dǎo)致不受控制的偏差,嚴(yán)重影響了鑄坯的質(zhì)量。1 因此,半和全板簧機(jī)制正逐步用于坯和板坯連鑄鑄造模具的導(dǎo)向機(jī)制。2,近年來(lái),隨著半的進(jìn)一步發(fā)展和全板簧振動(dòng)機(jī)構(gòu),級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)是國(guó)外開(kāi)發(fā)的,4 具有更長(zhǎng)的壽命,更高的側(cè)向剛度和可靠性等。然而,直到現(xiàn)在,這個(gè)振蕩機(jī)制報(bào)道較少。5、6 其工作原理已被提出,7 基于級(jí)聯(lián)的全板簧振動(dòng)機(jī)構(gòu)的設(shè)計(jì)方法,本文提出了制造和試驗(yàn)樣機(jī)。此外,剛性–剛?cè)狁詈咸摂M模型級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)建立其運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)仿真分析使用多種類(lèi)型的分析軟件,如 ANSYS 系統(tǒng)模式, 與受力鋼板彈簧和旋轉(zhuǎn)接頭的機(jī)理進(jìn)行了分析,并建立這一機(jī)制的進(jìn)一步研究和應(yīng)用的基礎(chǔ)。
工作原理的級(jí)聯(lián)全板簧導(dǎo)向機(jī)制
級(jí)聯(lián)的全板簧振動(dòng)機(jī)構(gòu)的結(jié)構(gòu)如圖 1 所示。它主要由級(jí)聯(lián)的鋼板彈簧,振動(dòng)臺(tái)架, 可由機(jī)械驅(qū)動(dòng)(圖 1A),或液壓伺服(圖 1b),正弦或非正弦振動(dòng)發(fā)生裝置。和級(jí)聯(lián)的鋼板彈簧是由四個(gè)鋼板彈簧的分為兩組。所有的鋼板彈簧的延長(zhǎng)線連接到該連鑄機(jī)及其兩端的圓弧中心分別連接到振動(dòng)臺(tái)和框架,如圖 2 所示,然后兩組葉片彈簧,振動(dòng)臺(tái)和框架形成二四連桿導(dǎo)向裝置。結(jié)晶器振動(dòng)時(shí),柔性葉片彈簧產(chǎn)生彈性變形,使兩個(gè)彈簧連桿導(dǎo)引裝置交替發(fā)揮指導(dǎo)作用在模具不由產(chǎn)生裝置的任何干擾。7
機(jī)械驅(qū)動(dòng);b 液壓伺服系統(tǒng)驅(qū)動(dòng)
1 級(jí)全板簧振動(dòng)機(jī)構(gòu)
級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)的設(shè)計(jì)
從級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)的工作原理,可以看出,兩彈簧四連桿機(jī)構(gòu)進(jìn)行指導(dǎo)模具。如果設(shè)計(jì)不合理,這兩片彈簧四連桿機(jī)構(gòu)運(yùn)動(dòng)干涉振動(dòng)過(guò)程中,將塊的模具。因此,如何設(shè)計(jì)這兩個(gè)彈簧機(jī)構(gòu)成為關(guān)鍵問(wèn)題。
級(jí)聯(lián)全板簧振動(dòng)裝置的設(shè)計(jì)方法
根據(jù)級(jí)聯(lián)全板簧機(jī)構(gòu)由短臂連桿機(jī)構(gòu)的特點(diǎn),提出以下設(shè)計(jì)方法:
(i) 基于仿弧短臂連桿機(jī)構(gòu)的設(shè)計(jì)原則,8 設(shè)計(jì)兩剛性連桿模具的基本參數(shù)下的優(yōu)化設(shè)計(jì),從而滿足指導(dǎo)模具模擬圓弧精度
(ii) 對(duì)兩連桿剛性聯(lián)系解決干擾,優(yōu)化的步驟(i)均采用鋼板彈簧的彈性變形,然后形成兩鋼板彈簧機(jī)構(gòu)
(iii) 基于短臂連桿機(jī)構(gòu)的基本原理,根據(jù)圖 2 安排兩彈簧機(jī)構(gòu)。那是,結(jié)束點(diǎn) A1,A2 和 C1,C2 固定在框架上;B1 和 B2 端點(diǎn),D1,D2 連接模具的振動(dòng)臺(tái)。這樣,兩簧片四桿機(jī)構(gòu)進(jìn)行級(jí)聯(lián),因此級(jí)聯(lián)全板簧機(jī)構(gòu)設(shè)計(jì)
2 布局級(jí)聯(lián)全板簧
計(jì)算實(shí)例
參數(shù)和剛性連桿制導(dǎo)精度的計(jì)算
根據(jù)幾何關(guān)系和四連桿導(dǎo)向裝置的弧形連鑄機(jī)的運(yùn)動(dòng)關(guān)系(見(jiàn)圖 2),在模具上任意一點(diǎn)的位置可以計(jì)算出結(jié)晶器振動(dòng)時(shí)。
在本文中,以底點(diǎn) E 在模具外弧為例,推導(dǎo)了軌道和 E 點(diǎn)的導(dǎo)向精度公式,如表1 所示,只有一個(gè)剛性連桿機(jī)構(gòu)的導(dǎo)模。
為了計(jì)算方便,假定 L1,L2,L3 和 L4 分別為 A1、B1、C1 A1,B1 和 C1 的連桿長(zhǎng)度,D1 和 C2A2,B2,A2,B2 和 C2 D2;S 是模具的振幅;DQ 是模具下的最大位移下的 B1 和 B2 D1 D2 聯(lián)動(dòng)擺角;R 為施法者的基本半徑;R1 和 R2 分別從中心半徑圓弧端點(diǎn)連接 A1 B1 C1,C2 A2 和 B2D1,D2;H1 和 H2 是雙方對(duì)模具的水平中心線的高度;一個(gè)是夾角 OE 的弧形連鑄機(jī)的橫向中心線當(dāng)模具處于平衡位置之間;H1,H2,R1 和 R2 分別夾角 A1 A2 B1 C1,C2,D1,D2 和之間的聯(lián)系,B2 水平中心線的施法者;該公司仿弧誤差的模。
數(shù)學(xué)模型與優(yōu)化的聯(lián)系
對(duì)結(jié)晶器振動(dòng)參數(shù)和機(jī)構(gòu)安裝位置的初步設(shè)計(jì)指導(dǎo)機(jī)制。以弧形連鑄機(jī)為例,外罰函數(shù)優(yōu)化方法在兩剛性四連桿機(jī)構(gòu)優(yōu)化設(shè)計(jì)中采用。四桿機(jī)構(gòu)設(shè)計(jì),是模具的軌跡誤差滿足精度要求的目標(biāo)指導(dǎo)。因此,優(yōu)化數(shù)學(xué)模型的目標(biāo)函數(shù)可寫(xiě)的
根據(jù)表 1,可以看出優(yōu)化設(shè)計(jì)變量
通過(guò)經(jīng)驗(yàn),幾何尺寸和兩連桿安裝位置必須具備以下條件
3 實(shí)驗(yàn)樣機(jī)
其中 D 是鑄坯厚度;?和 ρ 包括聯(lián)系和施法者的水平中心線之間的角度
基于目標(biāo)函數(shù)(方程(1)),優(yōu)化變量(方程(2))建立的方程約束(3),外罰函數(shù)優(yōu)化程序采用 C 語(yǔ)言和匯編兩連桿分別優(yōu)化設(shè)計(jì)。
優(yōu)化結(jié)果
在優(yōu)化,假定模具對(duì)其平衡位置和高程 H1 H2 = 900 毫米對(duì)稱布置;鑄坯的 D =
150 mm 厚;兩剛性連桿 Re = 0.02 毫米的導(dǎo)向精度。因此,幾何參數(shù)和兩剛性連桿導(dǎo)向精度優(yōu)化設(shè)計(jì)(表 2)。通過(guò)優(yōu)化的結(jié)果,是由葉片彈簧剛性連接按圖 2布置取代;然后設(shè)計(jì)了一個(gè)級(jí)聯(lián)的整個(gè)葉片彈簧機(jī)構(gòu)。
實(shí)驗(yàn)樣機(jī)的級(jí)聯(lián)全板簧振動(dòng)裝置
根據(jù)優(yōu)化結(jié)果,級(jí)聯(lián)的實(shí)驗(yàn)樣機(jī)制造全板簧振動(dòng)機(jī)構(gòu)的模具,如圖所示在圖 3 中,在這片彈簧連桿 A1 B1 C1 D1 由葉彈簧 1 和 4;葉春四連桿
A2 B2 C2 D2 是由葉彈簧 2 和 3。鋼板彈簧連桿 A1 A2 B1 B2 C1 C2 D1 和 D2 位于鑄造模具的兩側(cè)垂直方向。與原型的參數(shù)是圓形的數(shù)字表 2、制導(dǎo)精度的計(jì)算取整后,如表 3。
柔性多體理論
向量的位置,速度和加速度在柔性體點(diǎn)
基于小變形理論,對(duì)柔性體的復(fù)雜的運(yùn)動(dòng)可以分解為幾個(gè)簡(jiǎn)單運(yùn)動(dòng)。因此,柔性 體上任意點(diǎn)的位置向量可以表示為方程(4)9。
對(duì)兩剛性連桿和底點(diǎn) E 對(duì)模具的誤差參數(shù)的公式表 1
其中一個(gè)是方向余弦矩陣;RP 是點(diǎn) P 在慣性坐標(biāo)系中的向量;R0 是在慣性坐標(biāo)系的坐標(biāo)原點(diǎn)的運(yùn)動(dòng)矢量;SP 在移動(dòng)系統(tǒng)的點(diǎn) P 向量在柔性體變形;和是相對(duì)撓度的點(diǎn) P 用模態(tài)坐標(biāo)即上= WP Q 表示(如可濕性粉劑假設(shè)模態(tài)矩陣 Q 是變形的廣義坐標(biāo))。
微分方程(4)的時(shí)間,計(jì)算速度和加速度矢量
柔性多體系統(tǒng)動(dòng)力學(xué)方程
考慮到位置,對(duì)柔性體的方向和點(diǎn) P 模式,廣義坐標(biāo)的選擇,如方程(6)。
推導(dǎo)出是柔性體的運(yùn)動(dòng)方程
其中 y 是約束方程;我是拉格朗日乘數(shù)相應(yīng)的約束方程;Q 是廣義力投射到廣義坐標(biāo) J;L 是 L =部分拉格朗日項(xiàng)目,和 T 和 W 分別表示動(dòng)能和勢(shì)能。
柔性體的動(dòng)能的計(jì)算
其中 M(J)是質(zhì)量矩陣和 M(j)= 下標(biāo) T,R 和 M 分別表示翻譯,革命和模態(tài)的自由。
柔性體的勢(shì)能包括重力勢(shì)能和彈性勢(shì)能,即
其中 K 是廣義剛度矩陣對(duì)應(yīng)的模態(tài)坐標(biāo)和是一個(gè)常數(shù)。
因?yàn)槿嵝匀~片彈簧的質(zhì)量相對(duì)于振蕩的機(jī)理與其他部分級(jí)聯(lián)全板簧很小,可以忽略其潛在的能量。所以,代入方程(8)和(9)代入方程(7),柔性體的運(yùn)動(dòng)微分方程寫(xiě)成如下
4 仿真模型
級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)仿真
基于柔性多體動(dòng)力學(xué)理論的虛擬設(shè)計(jì),并使用多種軟件進(jìn)行了級(jí)聯(lián)的全板簧振動(dòng)機(jī)構(gòu)與非正弦振動(dòng)模的實(shí)驗(yàn)樣機(jī)的運(yùn)動(dòng)學(xué)仿真,如 ANSYS,10,11 和曲線對(duì)模具位移和速度得到與理想相比。
仿真模型
基于級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)的結(jié)構(gòu)特點(diǎn),它假設(shè)如下:
(i) 的振動(dòng)臺(tái)是關(guān)于 X Y 平面對(duì)稱和–Y 方向鑄造方向,與坐標(biāo)如圖 4 所
示
(ii) 鋼板彈簧的彈性變形是作為柔性體。偏心軸,連接桿,大的剛度和振
動(dòng)臺(tái)架為剛體。
所以建立了實(shí)驗(yàn)樣機(jī)的仿真模型,其中鋼板彈簧 1 和 4 是由兩組彈簧連桿
A1 B1 C1 D1;彈簧 2 和 3 是由兩組彈簧連桿 A2 B2 C2 D2 形成(圖 4)。運(yùn)動(dòng)學(xué)仿真及結(jié)果
為了模擬實(shí)際的非正弦運(yùn)動(dòng)規(guī)律與級(jí)聯(lián)全板簧機(jī)制指導(dǎo)模具,非均勻的轉(zhuǎn)速在偏心軸施加的,如圖 4 所示,在頻率 f = 2 赫茲,振蕩= 30%的偏差率和模具 h = 3 毫米振幅。
位移和振動(dòng)臺(tái)的速度曲線(即運(yùn)動(dòng)曲線的模具)如圖 5 所示,其中的錯(cuò)誤與理想曲線比較如圖 6 所示。從圖 5,可以看到虛擬振動(dòng)臺(tái)可以沿給定的非正弦規(guī)律運(yùn)動(dòng)。雖然在模擬模具的振蕩波形與理想曲線相比有誤差(圖 6),其最大位移誤差和速度都很?。ǚ謩e為 0.0068 毫米和 0.1287 毫米 S-1),可以忽略。因此,可以得出結(jié)論,虛擬模型是合理的和可用于
5 個(gè)位移和振動(dòng)臺(tái)的速度曲線 B
6 個(gè)位移誤差、速度誤差曲線 B 振動(dòng)臺(tái)
7 第一、二模態(tài)振型系統(tǒng) B
在級(jí)聯(lián)式全板簧機(jī)理的進(jìn)一步研究。振蕩機(jī)構(gòu)動(dòng)力學(xué)仿真
基于級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)的動(dòng)態(tài)仿真,系統(tǒng)的模態(tài)和受力鋼板彈簧和旋轉(zhuǎn)接頭進(jìn)行了分析。
振蕩機(jī)構(gòu)模態(tài)分析
采用瞬時(shí)凍結(jié)法機(jī)制,級(jí)聯(lián)的全板簧導(dǎo)向機(jī)制 12 進(jìn)行模態(tài)分析,從系統(tǒng)的模態(tài)和固有頻率得到。針對(duì)連鑄結(jié)晶器非正弦振動(dòng)頻率不是很高,13 階固有頻率和振型從第一到第五是強(qiáng)調(diào)本文以表 4 中的情態(tài)動(dòng)詞相關(guān)的信息。限于篇幅,
只對(duì)第三的第一振型如圖 7 所示。
從機(jī)制上的模態(tài)分析,它是已知的第一和第二自然較低的頻率和共振可以在模具中連續(xù)發(fā)生 casting.14 發(fā)生共振時(shí),模具會(huì)偏離正確的軌道,嚴(yán)重影響鑄坯的質(zhì)量。因此必須保證連鑄工作頻率遠(yuǎn)離第一組合全板簧振動(dòng)機(jī)構(gòu)的第二自然頻率。
鋼板彈簧的作用力分析
由于對(duì) X–Y 平面對(duì)稱,鋼板彈簧在梯級(jí)全板簧振動(dòng)機(jī)構(gòu)雙方有相同的力和變形,只在 z 軸正方向的一個(gè)分析。對(duì)于級(jí)聯(lián)整個(gè)葉片彈簧機(jī)構(gòu),彈簧連桿 A1 B1 C1 C2 D1 和 D2 2 B2 交替在模具的受力和變形的鋼板彈簧發(fā)揮引導(dǎo)作用是非常復(fù)雜的。所以很難分析葉片彈簧只有實(shí)驗(yàn)和計(jì)算機(jī)模擬具有重要意義。在本文中,基于虛擬樣機(jī)技術(shù),進(jìn)行動(dòng)力學(xué)仿真,以使模具的運(yùn)動(dòng)過(guò)程中,得到了鋼板彈簧的曲線。此外,基本振動(dòng)參數(shù)對(duì)這些力的影響進(jìn)行了分析,并建立對(duì)機(jī)構(gòu)的可靠性進(jìn)行深入研究的基礎(chǔ)上。
表 4 自然頻率和模態(tài)形狀從第一到第五級(jí)
葉片彈簧 1 彈簧 4;B C D 2;鋼板彈簧;彈簧 3 8 受力鋼板彈簧在不同的振幅
受力鋼板彈簧在不同的振幅
理解力在不同振幅的鋼板彈簧,采用不同長(zhǎng)度的偏心軸分別為 h = 3 毫米和2 毫米 H =模具運(yùn)動(dòng)(即模具的振幅)為例,模擬,振動(dòng)撓度比和頻率的部分的運(yùn)動(dòng)學(xué)仿真和結(jié)果一樣。作用力沿例如葉片彈簧,長(zhǎng)度方向,本文分析了。
基于動(dòng)態(tài)模擬,施加在鋼板彈簧 1 端,4 和 2,3 在一段時(shí)間內(nèi)得到如圖 8 所示。
可以看出,受力鋼板彈簧 1 端和 4 類(lèi)似
在非正弦規(guī)律變化。當(dāng)模具工作在前半期其平衡位置,兩葉片彈簧被壓縮在 負(fù)力的作用;當(dāng)模具動(dòng)作平衡位置的側(cè)下的后半期,這兩鋼板彈簧是用正面的力量拉。此外,該價(jià)值觀的力量對(duì)模具偏離其平衡位置的距離成正比。當(dāng)模具移動(dòng)到其最大位移,葉片彈簧將承受最大的力量。和力施加在葉片彈簧模具增加的幅 度變大。施加在彈簧 2 和 3 具有相同的規(guī)律變化,這些鋼板彈簧 1 和 4 而相反的。
當(dāng)模具在前半期其平衡位置,彈簧 2 和 3 承受拉力;然而,在另半周期,葉片彈簧承受壓力。同樣,力值的模具其平衡位置的距離成正比的力量得到更大的模具的振幅增大。
受力鋼板彈簧在振動(dòng)不同的偏差率
以相同的頻率和振幅在節(jié)的運(yùn)動(dòng)學(xué)仿真和結(jié)果,基于不同的振蕩A1 = 10%撓度比動(dòng)態(tài)仿真,A2A3 = 30%,= 50%,得到了各片彈簧力曲線, 如圖 9 所示。
從圖 9,可以看出,在相同的頻率和振幅的振動(dòng),葉片受力曲線撓度比彈簧振動(dòng)撓度比增大變大,但振幅施加力在每個(gè)葉片彈簧保持不變。
同時(shí)還有力量應(yīng)用于鋼板彈簧的長(zhǎng)度與正常方向,沿長(zhǎng)度方向的力相同的規(guī)律變化。一般來(lái)說(shuō),鋼板彈簧的作用力呈周期性的變化與系統(tǒng)相同的周期的結(jié)晶器振動(dòng)時(shí),它的值是以模具偏離其平衡位置的距離成正比,為模具的振幅的增大變大。撓度比
葉片彈簧 1 彈簧 2;B C D 3;鋼板彈簧;彈簧 4 9 受力鋼板彈簧在不同的偏差率
葉片彈簧力曲線振蕩加大撓度比變大,但每一個(gè)葉片彈簧力的振幅是不變
的。
基本振動(dòng)參數(shù)對(duì)聯(lián)合部隊(duì)的影響
基本振蕩參數(shù)通常被調(diào)整以滿足連鑄不同的技術(shù),這將影響運(yùn)動(dòng)對(duì)聯(lián)合部隊(duì)
和機(jī)構(gòu)的動(dòng)態(tài)特性。因此,聯(lián)合部隊(duì)對(duì)級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu),這表明振幅和振動(dòng) 撓度比影響的聯(lián)合部隊(duì)與類(lèi)似法律力量應(yīng)用于鋼板彈簧。聯(lián)合部隊(duì)得到更大的提 高模具和合力曲線撓度比振幅成為隨振蕩撓度比較大;然而,聯(lián)合部隊(duì)的振幅是恒定的。
基于以上分析,級(jí)聯(lián)的全葉振蕩機(jī)制可以設(shè)計(jì)合理的連鑄結(jié)晶器的根據(jù)實(shí)際條件,可使模具具有更好的性能和可靠性較高的生產(chǎn)沿著正確的軌道振動(dòng)。因此, 應(yīng)用的理論基礎(chǔ)。
結(jié)論
1。首先提出了一種級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)的設(shè)計(jì)方法。然后一個(gè)級(jí)聯(lián)全板簧
機(jī)構(gòu)的設(shè)計(jì)方法及其實(shí)驗(yàn)樣機(jī)。
2。建立剛性–撓性聯(lián)軸器足尺模型的級(jí)聯(lián)全板簧振動(dòng)機(jī)構(gòu)的原型;此外, 其運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)仿真分析和比較理想的曲線,其結(jié)果驗(yàn)證了虛擬模型是合理
的。
3。在連鑄系統(tǒng)的工作頻率必須遠(yuǎn)離其第一和第二避免共振的固有頻率
4。力施加在鋼板彈簧和旋轉(zhuǎn)接頭的振幅只有通過(guò)模具的振幅決定擴(kuò)大與模
具的增加幅度;當(dāng)振蕩增加的撓度比,力曲線的偏轉(zhuǎn)變大。這樣的系統(tǒng)現(xiàn)在正在規(guī)劃工業(yè)用。
工具書(shū)類(lèi)
1。Y. G.燕 X. J.王:誤差分析和比較兩種典型模具的振蕩器,重金屬馬赫。,2006,3,46–48,54。
2。在煉鋼連鑄技術(shù)的 800 個(gè)問(wèn)題,214–216;2004,北京,冶金工業(yè)出版
社。
3。E. S.塞凱賴什:'在連鑄的結(jié)晶器振動(dòng)概述,鋼鐵工程,1996,7,29–37。
4。F.威默:高速拉坯:理論研究和實(shí)踐經(jīng)驗(yàn),處理。奧鋼聯(lián)林茨,奧地利,
1996 CCC,1996 五月,VAI,第一頁(yè)。
5。群:“級(jí)聯(lián)整個(gè)葉片彈簧振蕩裝置”,中國(guó)專利號(hào) zl02238393 X,二月 2003。
6。R.柯¨HL,K.莫¨rwald,J 寶¨PPL 和 H.壽¨NE:“DYNAFLEX 振蕩器– 技術(shù)突破在小方坯連鑄”,鋼鐵,2001,36,25,22(8)–,29。
7。L. P.張某,李 X K,Q·鄒和 Y F.姚:'系列全板簧振動(dòng)機(jī)理的研究,馬赫。設(shè)計(jì)研究增刊。,2008,24,81,79–。
8。Z,X 雷和 D. K.徐:“弧形連鑄機(jī)的四連桿振動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)與分析J.大學(xué)北京,鋼鐵,1982,3,89,80–。
9。Y 路:“柔性多體系統(tǒng)動(dòng)力學(xué),109–165;1996,北京,高等教育出版
社。
10。B、O、Al bedoor 和 A. almusallam:“柔性關(guān)節(jié)機(jī)械臂旋轉(zhuǎn)慣性承載
有效載荷的動(dòng)力學(xué),機(jī)械。馬赫。理論,2000,35,820,785–。
11。B、O、Al bedoor 和 Y 的 khulief:'一個(gè)平移和旋轉(zhuǎn)的柔性連桿的有限元?jiǎng)恿W(xué)模型,計(jì)算。方法應(yīng)用。機(jī)甲。工程,1996,131,189,173–。
12。十、唐 D.金:“機(jī)械動(dòng)力學(xué),169–170;1984,北京,高等教育出版
社。
13。X K Li 和 D. M.張:在連鑄的結(jié)晶器振動(dòng)技術(shù),20–25;2000,北京,冶金工業(yè)出版社。
14。R.紹:“機(jī)械系統(tǒng)動(dòng)力學(xué),30–34;2005,北京,機(jī)械工業(yè)出版社。
附錄二
Study on cascaded whole-leaf spring oscillation mechanism for mould in continuous casting
L.-P. Zhang*1, X.-K. Li2, Y.-F. Yao2and L.-D. Yang3
A design method of a cascaded whole-leaf spring mechanism is proposed, which is a new oscillation guidance device for the mould in continuous casting. Then its prototype designed in this paper is produced in the lab, of which kinematics and dynamics simulations are carried out based on the rigid–flexible coupling virtual model. Simulation curves of the displacement and velocity of the mould are almost consistent with the ideal ones, which verifies the model built in this paper is rational. Furthermore, natural frequencies and mode shapes of the mechanism are calculated by dynamics simulation, and forces applied on leaf springs and revolute joints are analysed and effects of the basic parameters on these forces are also studied, which establish the basis for further studies and next application of this mechanism.
Keywords: Continuous casting, Mould, Cascaded whole-leaf spring oscillation mechanism, Design method, Dynamics analysis
Introduction
The oscillation system for the mould is the key equipment to the modern continuous casting technology, of which the technical performance and reliability directly affect the quality and production of continuous casting slabs. The oscillation system is composed of the oscillation generating device and guiding mechanism, and the latter is studied in this paper. During continuous casting, the oscillation guiding mechanism plays a guidance role in the motion of the mould. Only when the mould vibrates along the correct track, the quality of the strand can be ensured. So the strand requires very high guidance accuracy of the oscillation guiding mechanism for the mould. But for inevitable gap and wear of the bearings, the four-eccentric axes and four-bar linkage oscillation mechanisms widely used in modern casting will cause uncontrolled deviation in motions of the mould, which badly affects the quality of the strand.1 Therefore, the semi- and whole-leaf spring mechanisms are gradually used as guidance mechanisms for the mould in billet and slab continuous casting.2,3 In recent years, with further development of the semi- and whole-leaf spring oscillation mechanisms, the cascaded whole-leaf spring oscillation mechanism is developed abroad,4 which has a longer life, higher lateral rigidity and reliability and so on. However, until now, reports on this oscillation mechanism are few.5,6 Its working principle has been proposed by the authors,7 based on which design method of the cascaded whole-leaf spring oscillation mechanism is proposed in this paper and its
experimental prototype is manufactured. Furthermore, the rigid–flexible coupling virtual model of the cascaded whole-leaf spring oscillation mechanism is built and its kinematics and dynamics simulations are analysed using many types of software, such as ANSYS. System modes and the forces applied on leaf springs and revolute joints of the mechanism are analysed, which establish the basis for further studies and application of this mechanism.
Working principle of cascaded whole-leaf spring guidance mechanism
The structure of the cascaded whole-leaf spring oscillation mechanism is shown in Fig.
1. It mainly consists of the cascaded leaf spring, vibration table and frame, which can be driven by machinery (Fig. 1a), or hydraulics servo (Fig. 1b), generating device of sinusoidal or non-sinusoidal oscillation. And the cascaded leaf spring is composed of four steel plate springs divided into two sets. All leaf springs’ extension lines join to the circular arc centre of the continuous caster and their ends are separately connected to the vibration table and the frame, as shown in Fig. 2, and then two sets of leaf springs, the vibration table and the frame form two four bar linkage guidance devices. During the mould vibrating, flexible leaf springs produce elastic deformations, which make two leaf spring four-bar linkage guidance devices alternately play a guidance role in the mould without any interference by the generating device.7
a mechanic driven; b hydraulics servodriven
1 Cascaded whole-leaf spring oscillation mechanism
Design of cascaded whole-leaf spring oscillation mechanism
From working principle of the cascaded whole-leaf spring oscillation mechanism, it can be seen that two leaf spring four-bar linkages carry on the guidance to the mould.
If design is unreasonable, the motion of the two leaf spring four-bar linkages will interfere during vibration, which will block the mould. Therefore, how to design these two leaf spring four-bar linkages becomes the key problem.
Design method of cascaded whole-leaf spring oscillation mechanism
According to the characters of the cascaded whole-leaf spring mechanism developed from the short-arm four-bar linkage, its design method is proposed as following:
(i) based on the design principles of the short-arm four-bar linkage simulating arc,8 design two rigid four-bar linkages under the same basic parameters of the mould by optimum design, which fulfil the requirement for guiding accuracy of the mould simulating arc
(ii) for settling interference of the two four-bar linkages, rigid linkages optimised in step (i) are substituted by steel plate springs with elastic deformation and then form two leaf spring four-bar linkages
(iii) based on the basic principles of the short-arm four-bar linkage, arrange two leaf spring four-bar linkages according to Fig. 2. That is, end-points A1, C1 and A2, C2 are fixed on the frame; endpoints B1 , D1 and B2, D2 are connected to the vibration table of the mould. In this way, two leaf spring four-bar linkages are cascaded, so a cascaded whole-leaf spring mechanism is designed.
2 Layout of cascaded whole-leaf spring Calculation example
Calculations of parameters and guidance accuracy of rigid four-bar linkages
According to the geometry relations and the movement relationships of the four-bar linkage guidance devices of the arc caster (see Fig. 2), the position of any point on the mould can be calculated during the mould vibration.
In this paper, taken the bottom point E on the outer arc of the mould as an example, formulas of the track and the guiding accuracy of point E are deduced, as listed in
Table 1, with only one rigid four-bar linkage guiding for the mould.
To calculate conveniently, it is assumed that l1, l2, l3and l4 are respectively the lengths of linkages of A1 C1,A1 B1, B1 D1and C1 D1, and A2 C2, A2 B2, B2 D2and C2 D2; S is the amplitude of the mould; DQ is the swing angle of the linkage of B1 D1 and B2 D2 under the max displacement of the mould downward; R is the caster’s basic radius; R1 and R2 are radius respectively from the arc centre to two endpoints of linkages A1 C1, B1 D1, A2 C2 and B2 D2; H1and H2 are the heights of both sides to the horizontal centerline of the mould; a is the included angle between OE and the horizontal centreline of the arc caster when the mould is at equilibrium position; h1,h2, r1and r2 are respectively the included angles between linkages of A1 C1, A2 C2, B1 D1, B2 D2 and thehorizontal centreline of the caster; DREis the simulated arc error of the mould.
Mathematical model and optimisation of linkages
Oscillation parameters of the mould and the installation positions of linkages are the primary designing terms of the guidance mechanism. Taking arc caster for example, outside penalty function optimisation method is adopted in optimum design of the two rigid four-bar linkages.In four-bar linkages design, it is the goal that the trajectory error of the mould meets the requirement forguiding accuracy. So the objective function of the optimisation mathematical model can be written by
According to Table 1, it can be seen that the design optimisation variables are
By experience, geometric dimensions and installation positions of two four-bar linkages must meet thefollowing constraints
3 Experimental prototype
where D is the thickness of billet;? and ρ are included angles between linkages and horizontal centreline of the caster.
Based on the objective function (equation (1)), optimisation variables (equation (2)) and constraints established in equation (3), optimisation procedure of outside penalty function is compiled by C language and two four-bar linkages are separately optimum designed.
Optimisation results
In optimisation, it is assumed that the mould is arranged symmetrically about its equilibrium position and its height H1+H2=900 mm; the thickness of the billet D=150 mm; the guiding accuracies of two rigid four-bar linkages D RE=0.02 mm. Therefore, the geometrical parameters and the guiding accuracies of the two rigid four-bar linkages are optimum designed (Table 2). By the optimised results, rigid linkages are substituted by leaf springs arranged according to Fig. 2; then a cascaded whole-leaf spring mechanism is designed.
Experimental prototype of cascaded whole-leaf spring oscillation mechanism
Based on the optimised results, the experimental prototype of the cascaded
whole-leaf spring oscillation mechanism for the mould is manufactured, as shown in Fig. 3, in which leaf spring four-bar linkage A1 C1 B1 D1 is composed of leaf springs 1 and 4; and leaf spring four-bar linkage A2 C2 B2 D2 is made up of leaf
springs 2 and 3. Leaf spring four-bar linkages A1 C1 B1 D1 and A2 C2 B2 D2 are located at both sides of the mould in the vertical direction of casting. And parameters of the prototype are rounded numbers of Table 2 and guidance accuracy is calculated after rounding, as listed in Table 3.
Flexible multibody theory
Vectors of location, velocity and acceleration of point on flexible body
Based on the small deformation theory, complicated motion of the flexible body can be decomposed to several
Table 1 Formulas of parameters of two rigid four-bar linkages and error of bottom point E on mould
simple motions. So the location vector of any point on the flexible body can be expressed as equation (4).9
where A is the matrix of direction cosine; rP is the vector of point P in the inertial coordinate system; r0 is the vector of the origin of moving coordinate in the inertial coordinate system; sP is the vector of point P in movingcoordinate system when the flexible body is undeformed; and uP is the relative deflection of point P expressed by modal coordinates namely uP=WP q (where WP is the assumed modal matrix and q is the generalised coordinate of deformation).
Differentiating equation (4) with respect to time, vectors of velocity and acceleration are calculated
Flexible multibody dynamic equation
Considering the location, direction and mode of point P on the flexible body, the generalised coordinate is selected, as in equation (6).
The motion equation of flexible body is deduced from
where y is restraint equation; l is Lagrange multiplier corresponding to restraint equation; Q is generalised force projected to generalised coordinate j; L is Lagrange item with L=T-W, and T and W respectively denote kinetic energy and potential energy.
The kinetic energy of flexible body is calculated by
where M(j) is mass matrix and
M(j)=
subscripts t, r and m respectively denote translation, revolution and modal freedom.
The potential energy of flexible body includes the gravitational potential energy and the elastic potential energy, that is
where K is generalised stiffness matrix corresponding to modal coordinates and is a constant.
Because the mass of the flexible leaf springs is very small comparing to other parts of the oscillation mechanism with cascaded whole-leaf spring, its potential energy could be ignored. So substituting equations (8) and (9) into equation (7), differential equation of motion of the flexible body is written as follows
4 Simulating model
Kinematics simulation of cascaded whole-leaf spring oscillation mechanism
Based on the flexible multibody theory, the virtualdesign and then kinematics simulation of the experimental prototype of the cascaded whole-leaf spring oscillation mechanism for the mould with non-sinusoidal oscillation are carried out using many types of softwares, such as ANSYS,10,11 and curves of displacement and velocity of the mould are obtained and compared with the ideal ones.
Simulation model
Based on the structural characteristic of the cascaded whole-leaf spring oscillation mechanism, it is assumed as follows:
(i) the vibration table is symmetric about x–y plane and direction of –y is the casting direction, with the coordinate as shown in Fig. 4
(ii) leaf springs with elastic deformation are regarded as flexible bodies. Eccentric shaft, connecting
rod, vibration table and frame with big stiffness are taken for rigid bodies.
So the simulation model of the experimental prototype is built, in which leaf springs 1 and 4 are composed of two groups of leaf spring four-bar linkage A1 C1 B1 D1; and leaf springs 2 and 3 are formed by two groups of leaf spring four-bar
收藏