犁刀變速齒輪箱體工藝規(guī)程及夾具設(shè)計(鉆孔+銑面)
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:1064457796或者1304139763 ==================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:1064457796或者1304139763 ====================
機(jī)械加工工序卡片
產(chǎn)品型號
零件圖號
第 1 張
產(chǎn)品名稱
零件名稱
犁刀變速齒輪箱體
共 1 張
車間
工序號
工序名稱
材料牌號
機(jī)加工
30
粗銑Q面
HT200
毛坯種類
毛坯外形尺寸
每坯件數(shù)
每臺件數(shù)
鑄件
162×168× 51
1
設(shè)備名稱
設(shè)備型號
設(shè)備編號
同時加工件數(shù)
立式銑床
X52K
1
夾具編號
夾具名稱
切削液
專用夾具
工位器具編號
工位器具名稱
工序工時
終準(zhǔn)
單件
YG6A硬質(zhì)合金端銑刀
工步號
工步內(nèi)容
工藝裝備
主軸轉(zhuǎn)速(r/min)
切削速度(m/min)
進(jìn)給量
(mm/r)
切削深度(mm)
進(jìn)給
次數(shù)
基本工時
min
1
粗銑Q面,保證粗銑后的平面與72mm孔軸線之間尺寸51.5±0.09mm
刀具:YG6A硬質(zhì)合金端銑刀
量具:游標(biāo)卡尺
95
59.69
0.31
1.5
1
0.45
設(shè) 計(日 期)
校 對(日期)
審 核(日期)
標(biāo)準(zhǔn)化(日期)
會 簽(日期)
標(biāo)記
處數(shù)
更改文件號
簽字
日期
標(biāo)記
處數(shù)
更改文件號
簽字
日期
機(jī)械與運(yùn)載工程學(xué)院
畢業(yè)設(shè)計(論文)開題報告
畢業(yè)設(shè)計(論文)題目: 犁刀變速齒輪箱體工藝規(guī)程及夾具
設(shè)計
學(xué) 生 姓 名:
指導(dǎo)教師姓名:
專 業(yè) 班 級:
年 月 日
1. 課題名稱:
犁刀變速齒輪箱體工藝規(guī)程及夾具設(shè)計
2. 課題研究背景:
在這里,我從犁刀變速箱和夾具兩方面分別介紹。
(1)犁刀變速箱:
梨刀變速箱是手扶拖拉機(jī)的一個主要部件,如圖1所示,在這里主要討論國內(nèi)外拖拉機(jī)的發(fā)展?fàn)顩r。黨的十五大提出了“在下世紀(jì)中葉,基本實(shí)現(xiàn)現(xiàn)代化”的奮斗目標(biāo)。我國作為一個發(fā)展中的農(nóng)業(yè)大國,實(shí)現(xiàn)農(nóng)業(yè)現(xiàn)代化是當(dāng)務(wù)之急,而農(nóng)業(yè)機(jī)械化是農(nóng)業(yè)現(xiàn)代化的重要內(nèi)容和基本標(biāo)志,拖拉機(jī)則是農(nóng)業(yè)機(jī)械化的龍頭產(chǎn)品。拖拉機(jī)的擁有量和年產(chǎn)銷量,是評價一個國家農(nóng)業(yè)機(jī)械化水平的重要標(biāo)志。
圖 1-犁刀變速齒輪箱體
在這里, 首先,分析一下國內(nèi)技術(shù)現(xiàn)狀及存在問題:
1)行業(yè)現(xiàn)狀堪憂。我國拖拉機(jī)工業(yè)雖有較大發(fā)展,但大中型拖拉機(jī)的產(chǎn)品技術(shù)水平、質(zhì)量、規(guī)模、企業(yè)素質(zhì)和結(jié)構(gòu)與發(fā)達(dá)國家相比,從整體上分析并沒有明顯縮短差距,要相差20年以上。特別是新產(chǎn)品品種發(fā)展,產(chǎn)品技術(shù)水平,機(jī)電液一體化,人機(jī)工程、電子操縱監(jiān)控等方面差距更大。
2)產(chǎn)品品種少,新產(chǎn)品開發(fā)速度與市場需求變化太快不相適應(yīng)。拖拉機(jī)作為農(nóng)機(jī)產(chǎn)品,屬微利企業(yè),企業(yè)歷來很少有資金投入用于新產(chǎn)品開發(fā)及生產(chǎn)裝備的更新。大多數(shù)產(chǎn)品很少技術(shù)儲備,生產(chǎn)幾十年一貫制,產(chǎn)品水平低,趨同化趨勢嚴(yán)重。品種缺擋多,基本型多,運(yùn)輸型多,其它適用對路的變型產(chǎn)品少。
3)產(chǎn)品質(zhì)量、可靠性及使用壽命滿足不了用戶日益增長的期望值的要求。產(chǎn)品可靠性差,一次裝配合格率低,漏油和螺釘松動等一般性故障普遍存在,突出表現(xiàn)在大型拖拉機(jī)上,大型拖拉機(jī)的關(guān)鍵零部件由于工藝水平所限,質(zhì)量達(dá)不到設(shè)計要求。
4)與拖拉機(jī)配套的農(nóng)機(jī)具開發(fā)、生產(chǎn)不同步、不協(xié)調(diào),影響了拖拉機(jī)使用功能的發(fā)揮。
其次,談?wù)撘幌聡饧夹g(shù)現(xiàn)狀及發(fā)展趨勢:
90年代以來,國外拖拉機(jī)工業(yè)已進(jìn)入現(xiàn)代化發(fā)展的新階段。產(chǎn)品的更新速度加快,產(chǎn)品系列化進(jìn)一步完善,大部分產(chǎn)品實(shí)現(xiàn)了機(jī)電一體化、智能化,達(dá)到高效節(jié)能,產(chǎn)品外觀質(zhì)量轎車化。
拖拉機(jī)系列品種進(jìn)一步完善,產(chǎn)品技術(shù)性能不斷提高。國外幾家著名的拖拉機(jī)制造企業(yè)的技術(shù)發(fā)展,都是以其主導(dǎo)的2-3個拖拉機(jī)及配套柴油機(jī)的短系列產(chǎn)品為基礎(chǔ),不斷改進(jìn)、擴(kuò)展或派生出新的系列產(chǎn)品,進(jìn)行系列化生產(chǎn)。然后開發(fā)其主導(dǎo)產(chǎn)品的變型機(jī)及其配套作業(yè)的機(jī)具,來拓寬主導(dǎo)產(chǎn)品的用途和功能。同時使其產(chǎn)品的覆蓋面向相關(guān)的領(lǐng)域拓寬,以擴(kuò)大產(chǎn)品的品種和應(yīng)用范圍,在更大范圍內(nèi)占有市場。
全面實(shí)現(xiàn)機(jī)電液一體化、智能化。國外大中型拖拉機(jī)均已利用微電子技術(shù)及計算機(jī)技術(shù)、激光技術(shù)、傳感等高新技術(shù)對產(chǎn)品安全、節(jié)能、工作裝置操作,工作狀態(tài)、故障自診斷、不解體檢測等進(jìn)行控制和報警,取得了極佳的經(jīng)濟(jì)效益、社會效益。
制造水平進(jìn)一步提高,計算機(jī)數(shù)控技術(shù)(CNC),新材料、新工藝廣泛應(yīng)用,大大地提高了產(chǎn)品質(zhì)量、壽命、可靠性。
零部件的標(biāo)準(zhǔn)化、通用化程度進(jìn)一步提高,最大限度地簡化維修是國外先進(jìn)技術(shù)發(fā)展的一個重要標(biāo)志。
液壓技術(shù)朝著高壓、高速、大流量、大功率、靜動態(tài)特性好的閉式環(huán)路發(fā)展,且向結(jié)構(gòu)簡單,重量輕,成本低,可靠、耐用的高水平方向發(fā)展。同時進(jìn)一步與微電子技術(shù)結(jié)合,最大限度地提高功率利用率,減少無用功消耗,使拖拉機(jī)發(fā)動機(jī)始終處于最佳工作狀態(tài),減少能耗。此外,靜液壓傳動技術(shù)開發(fā)應(yīng)用在90年代又有了進(jìn)一步突破。
縱觀世界各國拖拉機(jī)最近技術(shù)的發(fā)展和應(yīng)用,無不都是廣泛采用了計算機(jī)及電子監(jiān)控系統(tǒng),高精度的機(jī)、電、液(氣)一體化等高科技產(chǎn)品。不難看出,要縮小我國當(dāng)前在拖拉機(jī)設(shè)計及制造方面的差距,其任務(wù)是十分艱巨的。它需要我們在相當(dāng)長的一段時間內(nèi),堅持不懈的努力,堅持走技術(shù)創(chuàng)新的道路,從基礎(chǔ)技術(shù)的研究到高新技術(shù)的產(chǎn)業(yè)化開發(fā),以鍥而不舍的精神,一步一步地去跟上當(dāng)今世界最新拖拉機(jī)技術(shù)的發(fā)展。
(2)夾具:
夾具從產(chǎn)生到現(xiàn)在,大約可以分為三個階段:第一個階段主要表現(xiàn)在夾具與人的結(jié)合上,這是夾具主要是作為人的單純的輔助工具,是加工過程加速和趨于完善;第二階段,夾具成為人與機(jī)床之間的橋梁,夾具的機(jī)能發(fā)生變化,它主要用于工件的定位和夾緊。人們越來越認(rèn)識到,夾具與操作人員改進(jìn)工作及機(jī)床性能的提高有著密切的關(guān)系,所以對夾具引起了重視;第三階段表現(xiàn)為夾具與機(jī)床的結(jié)合,夾具作為機(jī)床的一部分,成為機(jī)械加工中不可缺少的工藝裝備。
隨著機(jī)械工業(yè)的迅速發(fā)展,對產(chǎn)品的品種和生產(chǎn)率提出了愈來愈高的要求,使多品種,中小批生產(chǎn)作為機(jī)械生產(chǎn)的主流,為了適應(yīng)機(jī)械生產(chǎn)的這種發(fā)展趨勢,必然對機(jī)床夾具提出更高的要求。它主要表現(xiàn)在以下幾個方面:
1)加強(qiáng)機(jī)床夾具的三化工作
為了加速新產(chǎn)品的投產(chǎn),簡化設(shè)計工作,加速工藝裝備的準(zhǔn)備工作,以獲得良好的技術(shù)經(jīng)濟(jì)效果,必須重視機(jī)床夾具的標(biāo)準(zhǔn)化,系列化和通用化工作。
2)大力研制推廣實(shí)用新型機(jī)床夾具
在單件,小批生產(chǎn)或新產(chǎn)品試制中,應(yīng)推廣使用組合夾具和半組合夾具。
在多品種,中小批生產(chǎn)中,應(yīng)大力推廣使用可調(diào)夾具,尤其是成組夾具。
3)提高夾具的機(jī)械化,自動化水平
近十幾年來,高效,自動化夾具得到了迅速的發(fā)展。由于數(shù)控機(jī)床,組合機(jī)床及其它高效自動化機(jī)床的出現(xiàn),要求夾具能適應(yīng)機(jī)床的要求,才能更好的發(fā)揮機(jī)床的作用。
3. 課題研究意義:
畢業(yè)設(shè)計是教學(xué)計劃的最后一個教學(xué)環(huán)節(jié),也是最重要的教學(xué)環(huán)節(jié)之一.在教師的指導(dǎo)下,我們通過畢業(yè)設(shè)計受到一次綜合運(yùn)用所學(xué)理論和技能的訓(xùn)練,進(jìn)一步提高分析問題和解決問題的能力;并且學(xué)會閱讀參考文獻(xiàn),收集,運(yùn)用原始資料的方法以及如何使用規(guī)范,手冊,產(chǎn)品目錄,選用標(biāo)準(zhǔn)圖的技能,從而提高設(shè)計計算及繪圖的能力。
本選題與本專業(yè)密切相關(guān),能結(jié)合社會生產(chǎn)實(shí)際或科研實(shí)踐,工程性強(qiáng),現(xiàn)實(shí)意義明顯,具有相當(dāng)?shù)南冗M(jìn)性、深度和難度。可以說是對大學(xué)幾年學(xué)習(xí)以來的一個很好的補(bǔ)充,也是對未來工作的一個很好的鍛煉。
首先,通過本次畢業(yè)設(shè)計,使我們能夠真正的鞏固所學(xué)的專業(yè)知識。其次,在設(shè)計中,我們勢必將會運(yùn)用到許多繪圖和分析軟件,我們可以加強(qiáng)掌握運(yùn)用專業(yè)軟件解決實(shí)際問題的能力。再次,通過本課題的研究,培養(yǎng)我們綜合運(yùn)用所學(xué)基礎(chǔ)理論知識、基本技能和專業(yè)知識,聯(lián)系生產(chǎn)實(shí)際以及自我分析和解決問題的能力。
4.文獻(xiàn)查閱概況
[1]邱彩云.加工箱體類零件的鏜床夾具設(shè)計[J].山東工業(yè)技術(shù).2013(11):
242~243.
摘要:箱體類零件是機(jī)器及其部件的基礎(chǔ)件,它將機(jī)器及其部件中的軸、軸承、套和齒輪等零件按一定的相互位置關(guān)系裝配成一個整體,并按預(yù)定傳動關(guān)系細(xì)條其運(yùn)動。因此,箱體的加工質(zhì)量不僅影響其裝配精度及運(yùn)動精度,而且影響到機(jī)器的工作精度,而且影響到機(jī)器的工作精度、使用性能和壽命。箱體類零件具有結(jié)構(gòu)復(fù)雜、壁薄且不均勻、加工部位多及加工難度大等特點(diǎn)。因此,箱體類零件加工的關(guān)鍵屎加工工藝規(guī)程制定和機(jī)床夾具的設(shè)計,加工工藝規(guī)程制定和機(jī)床夾具設(shè)計合理、可靠易于保證零件加工精度,縮短輔助時間,提高勞動生產(chǎn)率,降低生產(chǎn)成本;并可以減輕工人操作強(qiáng)度,降低對工人的技術(shù)要求,同時擴(kuò)大了機(jī)床的工藝范圍,實(shí)現(xiàn)一機(jī)多能;另外還可以減少生產(chǎn)準(zhǔn)備時間,縮短新產(chǎn)品試制周期。
[2]陳斌,黎向新.GN31型手拖變速箱體雙面45軸鉆孔組合機(jī)床的設(shè)計[J].裝備制造技術(shù).2008(7):131~132.
摘要:介紹了多孔密集型箱體組合機(jī)床的設(shè)計過程,實(shí)際上證明該機(jī)床設(shè)計嚴(yán)謹(jǐn)規(guī)范,又有技術(shù)創(chuàng)新,使用效果良好。
[3]王秀玲,谷東偉,王志瓊.變速器前殼體加工中心專用夾具設(shè)計[J].機(jī)床與液壓.2015,43(2):5~7.
摘要: 為實(shí)現(xiàn)變速箱前殼體一次裝夾同時進(jìn)行鉆、 銑、 鏜加工的要求, 設(shè)計了一套加工中心用變速箱前殼體快速裝夾的液壓自動專用夾具。 針對變速箱前殼體的結(jié)構(gòu)采用 “一面兩銷” 定位方式, 設(shè)計了自定心機(jī)構(gòu), 并詳細(xì)闡述了機(jī)構(gòu)原理, 保證定位精準(zhǔn)可靠。 夾具采用液壓夾緊, 計算了切削力和夾緊力, 選取了夾具油缸并設(shè)計了相應(yīng)的液壓系統(tǒng)。 實(shí)踐證明: 該夾緊結(jié)構(gòu)簡單, 操作方便, 避免了基準(zhǔn)的轉(zhuǎn)換, 保證了加工精度, 提高了加工效率。
[4]郭安斌.變速箱兩側(cè)面鉆孔組合機(jī)床夾具設(shè)計[J].科技向?qū)В?012(33):344~346.
摘要:組合機(jī)床地夾具設(shè)計具有生產(chǎn)效率高、加工精度穩(wěn)定、制造和維護(hù)成本低、配置靈活等特點(diǎn)。由于切削力不是很大,采用手動夾緊裝置,降低成本。本次夾具設(shè)計運(yùn)用了Pro/E軟件進(jìn)行了實(shí)體的設(shè)計,使零件直觀,設(shè)計簡便,與實(shí)際更為貼近。
[5]黃艷,胡義華,農(nóng)勝隆,鐘禮君,林祖正.變速箱體雙工位鉆鏜專用夾具設(shè)計[J].組合機(jī)床與自動化加工技術(shù).2017(11):150~152.
摘要:針對變速箱體被加工孔系多,同軸度要求高,跨距大,在傳統(tǒng)工藝上加工過程中需要多次裝夾 和更換刀具,在臥式鏜銑加工中心上加工成本高的情況,設(shè)計了一種可以在立式加工中心上對變速 箱體進(jìn)行快速加工的雙工位旋轉(zhuǎn)專用夾具。 闡述了該夾具的結(jié)構(gòu)特點(diǎn)及工作原理,通過對變速箱體的加工工藝分析,采用完全定位的方案,并對定位誤差進(jìn)行分析和控制,采用液壓夾緊和翻轉(zhuǎn),并計 算切削力和夾緊力,設(shè)計了相應(yīng)的液壓系統(tǒng)。 該夾具可以使工件在立式加工中心上實(shí)現(xiàn)一次裝夾完成上下兩面的加工,滿足了企業(yè)生產(chǎn)要求,提高了生產(chǎn)效率和經(jīng)濟(jì)效益。
[6]于曉文,吳敬.方形端面零件深孔加工車床夾具設(shè)計[J].機(jī)床與液壓,2014,42(20):20.
摘要:針對方形端面零件特點(diǎn),設(shè)計工裝夾具,解決了零件裝夾問題中的中心架支撐問題,有家具精度保證零件加工精度。
[7]梁偉文,復(fù)雜零件斜面斜孔加工的夾具設(shè)計[J].中國制造業(yè)信息化,2012,41(23):105~108.
摘要:針對復(fù)雜零件的斜面斜孔加工,以四軸臥式加工中心加工的殼體零件為對象,分析了該零件的工藝要求和家居設(shè)計要求,設(shè)計和制作了一款專用夾具,同時分析和計算了該夾具的定位誤差,最后利用該夾具進(jìn)行了加工分析,證明了該方法簡單實(shí)用,達(dá)到了零件設(shè)計所要求的加工精度,降低了加工成本,具有較強(qiáng)的實(shí)用性。
[8]劉旭,朱學(xué)超,李洪偉.基于典型殼體零件加工工藝規(guī)程及鉆孔專用夾具設(shè)計[J].煤礦機(jī)械,2012,33(08):125~126.
摘要:介紹了典型殼體零件的作用、應(yīng)用場合,分析了零件的技術(shù)要求,為了保證加工質(zhì)量,提高加工效率,進(jìn)行了殼體零件的機(jī)械加工工藝規(guī)程和專用機(jī)床夾具的設(shè)計,設(shè)計的夾具操作方便、加持穩(wěn),減輕了勞動強(qiáng)度,具有很好的經(jīng)濟(jì)效益。
[9]鐘春明.減速箱箱體加工工藝及夾具設(shè)計[J].科技向?qū)В?014(12):140。
摘要:在零件加工產(chǎn)業(yè)中心,有關(guān)機(jī)械減速結(jié)構(gòu)與夾具優(yōu)化達(dá)標(biāo)狀況,將直接影響后續(xù)工作流程的交接力度。在相對科學(xué)的工藝編制流程之下,設(shè)計材質(zhì)消耗數(shù)量與生產(chǎn)均衡條件將得到順利延展,機(jī)床夾具在機(jī)械制造工序中具有不可代替的重要疏通地位,其將人工勞動強(qiáng)度有力規(guī)避,同時保證產(chǎn)品制備質(zhì)量。因此,本文具體聯(lián)合減速箱體加工工藝進(jìn)行夾具結(jié)構(gòu)匹配,保證高精度的制孔條件,并充分考慮內(nèi)部結(jié)構(gòu)公差的影響狀況。
[10]黃曉東.殼體零件加工車削工藝分析及夾具設(shè)計[J].科教導(dǎo)刊,2017(22).
摘要:為保障殼體零件加工效果,提高加工效率,文章針對某殼體模具零件特點(diǎn),進(jìn)行了殼體零件車床夾具工藝的分析和專用機(jī)床夾具的設(shè)計,達(dá)到了零件加工質(zhì)量以及生產(chǎn)安全要求。
[11]何理瑞.快速加工中心孔的專用夾具設(shè)計[J].機(jī)床與液壓,2014,42(8).
摘要:簡述了專用夾具的作用,設(shè)計了在機(jī)床上快速加工中心孔的專用夾具。通過夾緊力的驗(yàn)算,該夾具完全可以實(shí)現(xiàn)對工件的加緊。介紹了此夾具的結(jié)構(gòu)及使用方法,分析了其加工優(yōu)勢。此夾具結(jié)構(gòu)簡單、適用范圍廣、加緊可靠,可降低勞動強(qiáng)度、提高生產(chǎn)率,具有較強(qiáng)的人性化效果和降低生產(chǎn)成本的 目的。
[12]姜樹祥.汽車變速箱殼體的工藝裝備設(shè)計[J].民譽(yù)科技,2016(5).
摘要:針對汽車變速箱體的零件進(jìn)行工藝規(guī)程設(shè)計,為保證平面的加工精度要比保證孔系的加工精度容易,因此遵循先面后孔的原則,并將孔與平面的加工明確劃分成粗加工和精加工階段以保證孔系加工精度。
[13]Abhishek Das, Pasquale Franciosa and Darek Ceglarek.Fixture Design Optimisation Considering Production Batch of Compliant Non-Ideal Sheet Metal Parts.Procedia Manufacturing, 2015,Volume 1: 157~168.
Abstract:Fixtures control the position and orientation of parts in an assembly process and thus significantly contribute to process capability that determines production yield and product quality. As a result, a number of approaches were developed to optimise a single- and multi-fixture assembly system with rigid (3-2-1 fixture layout) to deformable parts (N-2-1 fixture layout). These approaches aim at fixture layout optimisation of single ideal parts (as define by CAD model). However, as production yield and product quality are determined based on a production volume of real (non-ideal) parts. Thus, major challenges involving the design of a fixture layout for assembly of sheet metal parts can be enumerated into three categories: (1) non-ideal part consideration to emulate real part; (2) ‘N-2-1’ locating scheme due to compliant nature of sheet metal parts; and, (3) batch of non-ideal parts to consider the production process error at design stage.
This paper presents a new approach to improve the probability of joining feasibility index by determining an N-2-1 fixture layout optimised for a production batch of non-ideal sheet metal parts. The proposed methodology is based on: (i) generation of composite parts to model shape variation within given production batch; (ii) selection of composite assembly representing production batch; (iii) parameterisation of fixture locators; and (iv) calculation of analytical surrogate model linking composite assembly model and fixture locators to probability of joining feasibility index. The analytical surrogate model is, then, utilised to maximise the probability of joining feasibility index starting from initial fixture locator layout. An industrial case study involving assembly process of remote laser welded door assembly illustrates and validates the proposed methodology.
[14]Chetankumar M. Patel*, Dr.G.D.Acharya.Design and manufacturing of 8 cylinder hydraulic fixture for boring yoke on VMC - 1050.Procedia Technology 2014,Volume 14 : 405 ~ 412 .
Abstract:Jigs and fixtures are the special production tools which make the standard machine tool, more versatile to work as specialized machine tools. They are normally used in large scale production by semi-skilled operators; however they are also used in small scale production by when interchangeability is important. Various areas related to design of fixture are already been very well described by various renowned authors, but there is a need to couple and apply all these research works to an industrial application. This paper on “Design and manufacturing of 8 cylinder hydraulic fixture for boring YOKE on VMC – 1050” which integrates all these aspects and the evolutionary functional approach of designed fixture is proved from the fact that a real industrial component is considered for fixture designing. In addition of the fixture being hydraulic type, it is also collet type and has expanding customized collet as its main fixturing element. The fixture shows great time saving in the production.
[15]models for capacity optimization in Industry 4.0: Tra.Development of hydraulic clamping tools for the machining of complex shape mechanical components
Procedia Manufacturing ,2018,17: 563~570.
Abstract:All markets revolve around quality and, regarding a big portion of the industry, factors such as productivity and profitability are crucial to the growth and sustainability of companies’. Processes need to be well thought to ensure process repeatability and stability, particularly in machining through chipping. In order to allow this, it is necessary to perfectly define the process, machining sequence and to create physical and organizational tools that are less prone to error. Machine setup can encompass several machining errors which, sometimes, are difficult to detect using traditional control tools such as dimensional inspection. There are some cases in which the final product is faulty and it is difficult to trace the real root-causes. To avoid those errors, it is important to create easily tuneable tools which require minimal instruction to use and to creat mechanisms which allow for flaw detection during production and not only during final inspection.This work will bring a chance to improve the machining processes of complex shaped mechanical components that present strong failure risks during the machine setup,through the development of a clamping tool,giving way to easer setup operations.
5.設(shè)計(論文)的主要內(nèi)容
(1)分析零件的工藝性;
(2)根據(jù)生產(chǎn)綱領(lǐng)決定生產(chǎn)類型;
(3)選擇毛坯的種類和制造方法;
(4)擬訂工藝過程;
(5)工序設(shè)計及計算;
(6)編制工藝文件;
(7)設(shè)計鉆、銑夾具。
畢業(yè)設(shè)計(論文)要求:
(1) 生產(chǎn)綱領(lǐng):中批生產(chǎn);
(2)犁刀變速齒輪箱體零件圖;
(3) 設(shè)計犁刀變速齒輪箱體加工工藝規(guī)程;
(4) 設(shè)計犁刀變速齒輪箱體鉆孔夾具;
(5)設(shè)計犁刀變速齒輪箱體銑面夾具。
(6)在設(shè)計方案等環(huán)節(jié)應(yīng)考慮和體現(xiàn)社會、健康、安全、環(huán)境、法律、文化等因素的影響。
6.設(shè)計(論文)提交形式
(1)犁刀變速齒輪箱體的工藝過程綜合卡片;
(2)機(jī)加工工序卡;
(3)鉆、銑夾具裝配圖;
(4)鉆、銑夾具零件圖;
(5)犁刀變速齒輪箱體零件圖和毛坯圖;
(6)設(shè)計說明書一份。
7.進(jìn)度安排
第四周~第六周:查閱相關(guān)資料,寫開題報告,進(jìn)行文獻(xiàn)綜述。做與題目相關(guān)英文資料的中文翻譯;
第七周:對零件進(jìn)行工藝分析,畫零件圖;
第八周~第九周:選擇加工方案,確定毛坯的制造形式,制訂工藝路線,選擇定位基準(zhǔn),選擇機(jī)床及工、夾、量、刀具,確定加工余量、工序間尺寸及與公差,確定毛坯尺寸,畫毛坯圖;
第十周:確定各工序的切削用量及基本工時;
第十一周~第十二周:工藝裝備設(shè)計,計算夾緊力,進(jìn)行定位誤差分析,畫總裝圖;
第十三周:畫夾具零件圖;
第十四周~第十五周:編寫設(shè)計說明書;
第十六周:準(zhǔn)備所有答辯資料,準(zhǔn)備答辯;
第十七周:進(jìn)行畢業(yè)答辯。
8. 指導(dǎo)教師意見
簽名:
年 月 日
----大學(xué)畢業(yè)設(shè)計(論文)任務(wù)書
畢業(yè)設(shè)計(論文)題目:
犁刀變速齒輪箱體工藝規(guī)程及夾具設(shè)計
畢業(yè)設(shè)計(論文)要求及原始數(shù)據(jù)(資料):
1. 生產(chǎn)綱領(lǐng):中批生產(chǎn);
2. 犁刀變速齒輪箱體零件圖;
3. 設(shè)計犁刀變速齒輪箱體加工工藝規(guī)程;
4. 設(shè)計犁刀變速齒輪箱體鉆孔夾具;
5. 設(shè)計犁刀變速齒輪箱體銑面夾具。
6. 在設(shè)計方案等環(huán)節(jié)應(yīng)考慮和體現(xiàn)社會、健康、安全、環(huán)境、法律、文化等因素的影響。
進(jìn)度安排:
第四周~第六周:查閱相關(guān)資料,寫開題報告,進(jìn)行文獻(xiàn)綜述。做與題目相關(guān)英文資料的中文翻譯;
第七周:對零件進(jìn)行工藝分析,畫零件圖;
第八周~第九周:選擇加工方案,確定毛坯的制造形式,制訂工藝路線,選擇定位基準(zhǔn),選擇機(jī)床及工、夾、量、刃具,確定加工余量、工序間尺寸及與公差,確定毛坯尺寸,畫毛坯圖;
第十周:確定各工序的切削用量及基本工時;
第十一周~第十二周:工藝裝備設(shè)計,計算夾緊力,進(jìn)行定位誤差分析,畫總裝圖;
第十三周:畫夾具零件圖;
第十四周~第十五周:編寫設(shè)計說明書;
第十六周:準(zhǔn)備所有答辯資料,準(zhǔn)備答辯;
第十七周:進(jìn)行畢業(yè)答辯。
畢業(yè)設(shè)計(論文)主要內(nèi)容:
1.分析零件的工藝性;
2.根據(jù)生產(chǎn)綱領(lǐng)決定生產(chǎn)類型;
3.選擇毛坯的種類和制造方法;
4.擬訂工藝過程;
5.工序設(shè)計及計算;
6.編制工藝文件;
7.設(shè)計鉆、銑夾具。
學(xué)生應(yīng)交出的設(shè)計文件(論文):
1. 犁刀變速齒輪箱體的工藝過程綜合卡片;
2. 機(jī)加工工序卡;
3. 鉆、銑夾具裝配圖;
4. 鉆、銑夾具零件圖;
5. 犁刀變速齒輪箱體零件圖和毛坯圖;
6.設(shè)計說明書一份。
主要參考文獻(xiàn)(資料):
[1] 李洪.機(jī)械加工工藝手冊[M]. 北京:北京出版社,1900.
[2] 李益民. 機(jī)械制造工藝設(shè)計簡明手冊 [M]. 北京:機(jī)械工業(yè)出版社,1994.
[3] 孫本續(xù),熊萬武. 機(jī)械加工余量手冊[M]. 北京:國防工業(yè)出版社,1999.
[4] 艾興,肖詩綱. 切削用量簡明手冊 [M].3版. 北京:機(jī)械工業(yè)出版社,1994.
[5] 呂明. 機(jī)械制造技術(shù)基礎(chǔ) [M].2版. 武漢:武漢理工大學(xué)出版社,2010.
[6] 廖念釗等. 互換性與技術(shù)測量[M].6版. 北京:中國質(zhì)檢出版社,2012
[7] 李大磊,王棟. 機(jī)械制造工藝學(xué)課程設(shè)計指導(dǎo)書[M].2版 北京:機(jī)械工業(yè)出版社,2014
[8] 馬麟等.畫法幾何與機(jī)械制圖[M]. 北京:高等教育出版社,2011
[9] 東北重型機(jī)械學(xué)院等編.機(jī)床夾具設(shè)計手冊[M]. 上海:上??萍技夹g(shù)出版社,1990
[10] 孟少農(nóng). 機(jī)械加工工藝手冊[M] 第一卷.北京:機(jī)械工業(yè)出版社,1991
[11] P.L.Jacobs.Stereolithograghy and Other RP&M Techologies.ASME Press[M],1996
專業(yè)班級 學(xué)生
要求設(shè)計(論文)工作起止日期
指導(dǎo)教師簽字 日期
教研室主任審查簽字 日期
系主任批準(zhǔn)簽字 日期
2351-9789 2015 The Authors.Published by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:/creativecommons.org/licenses/by-nc-nd/4.0/).Peer-review under responsibility of the NAMRI Scientific Committeedoi:10.1016/j.promfg.2015.09.079 Fixture Design Optimisation Considering Production Batch of Compliant Non-Ideal Sheet Metal Parts Abhishek Das,Pasquale Franciosa and Darek Ceglarek WMG,The University of Warwick,Coventry,U.K.abhishek.daswarwick.ac.uk,pasquale.fraciosawarwick.ac.uk,d.j.ceglarekwarwick.ac.uk Abstract Fixtures control the position and orientation of parts in an assembly process and thus significantly contribute to process capability that determines production yield and product quality.As a result,a number of approaches were developed to optimise a single-and multi-fixture assembly system with rigid(3-2-1 fixture layout)to deformable parts(N-2-1 fixture layout).These approaches aim at fixture layout optimisation of single ideal parts(as define by CAD model).However,as production yield and product quality are determined based on a production volume of real(non-ideal)parts.Thus,major challenges involving the design of a fixture layout for assembly of sheet metal parts can be enumerated into three categories:(1)non-ideal part consideration to emulate real part;(2)N-2-1 locating scheme due to compliant nature of sheet metal parts;and,(3)batch of non-ideal parts to consider the production process error at design stage.This paper presents a new approach to improve the probability of joining feasibility index by determining an N-2-1 fixture layout optimised for a production batch of non-ideal sheet metal parts.The proposed methodology is based on:(i)generation of composite parts to model shape variation within given production batch;(ii)selection of composite assembly representing production batch;(iii)parameterisation of fixture locators;and(iv)calculation of analytical surrogate model linking composite assembly model and fixture locators to probability of joining feasibility index.The analytical surrogate model is,then,utilised to maximise the probability of joining feasibility index starting from initial fixture locator layout.An industrial case study involving assembly process of remote laser welded door assembly illustrates and validates the proposed methodology.Keywords:Shape error modelling,Batch of sheet metal parts,N-2-1 fixture design optimisation,Surrogate model 1 Introduction Assembly fixture plays a significant role to achieve desired dimensional and joining qualities(Key Product Characteristics-KPCs)of assembled product where fixture design parameters act as Key Control Characteristics(KCCs).Fixtures are being used to provide accurate locating scheme to the Procedia ManufacturingVolume 1,2015,Pages 15716843rd Proceedings of the North American Manufacturing ResearchInstitution of SME http:/www.sme.org/namrc parts or subassemblies being assembled as well as to avoid shape variation in the assembly.It has been demonstrated that fixtures have large impact on product dimensional and geometric/shape variation and,subsequently,on product yield(Phoomboplab and Ceglarek,2008;Das et al.,2014).This is especially true for assembly processes of sheet metal parts produced by plastic deformation processes which lead to significant shape variations(also called non-ideal part)due to mainly spring-back,forming process parameters variations,tooling errors.Additionally,due to the compliance of sheet metals,parts can get deformed and cause variation in assembly processes(Li et al.,2001).For example,excessive variations in automotive enclosure panels may cause fundamental problems such as unnecessary closing effort,improper fit causing vibration and noise,air leakage as well as poor aesthetic appearance due to misalignment(Ceglarek et al.,2004;Camelio et al.,2004a;Huang et al.,2014).Subsequently,the shape variation management is a key issue in current industrial manufacturing and assembly process as it has direct impact on the product quality,cost and time-to-market.To be competitive in the market,proper shape and part management through robust fixture design is inevitable prerequisite to minimize the defects caused by variation during manufacturing and product usage.The locating principle 3-2-1 is widely used in industries to locate rigid body parts quite uniquely without creating locator interferences(Lowell,1982;Shirinzadeh,2002).Variety of research literature exists in field of fixture design considering 3-2-1 part locating scheme which are mainly focused on designing and optimising fixtures for machining operations(Youcef-Toumi et al.,1988;Menassa and DeVries,1991).Further,Rearick et al.(1993)introduced deformable sheet metal parts and they proposed a technique combining the nonlinear programming and FEM for determining the best fixture locations.Beyond the first requirement of part placement and constraining the rigid body motion,the fixture should also be able to limit any part deformation.Unfortunately,compliant sheet metal parts cannot be controlled through 3-2-1 scheme which require increased number of locators to N-2-1 to minimise geometric deviation(N3).For compliant part fixturing,Cai et al.(1996)proposed N-2-1 locating principle which allows to prevent excessive deformation of sheet metal parts by defining N locators on the primary datum.Camelio et al.(2004a)presented a new fixture design methodology for sheet metal assembly processes focusing on the impact of fixture position on the dimensional quality of sheet metal parts after assembly by considering the effect of part variation,tooling variation and assembly spring-back.A number of research focuses on joining process considering resistance spot welding and single part errors(Cai,2008;Li et al.,2008a;Li et al.,2010;Liu and Hu,1997).In case of laser welding,fixture plays a vital role by providing the degree of metal fit-up required to join the mating parts together.Li et al.(2001)proposed a prediction and correction methodology integrated with FEM for fixture design for laser welding where the objective function is to minimise the degree of Metal Fit-up(DMF),which is the maximum distance between mating nodes in weld joints.Few attempts have been made over the years to optimise fixture design considering the metal fit-up problem of compliant sheet metal assembly and the parts shape variation(Li et al.,2001).Undoubtedly,a batch of sheet metal parts produced through metal forming process may be affected by within batch or batch-to-batch variation which leads to quality loss of the final assembly.For example,some assembly joining processes,such as Remote Laser Welding(RLW),part variation strongly affects the final product performance which is imputed to part-to-part gap(Ceglarek,2011).Therefore,a systematic fixture design approach is demanded to mitigate the part-to-part variation as coming from the real manufacturing process.Existing methods(Li et al.,2007;Li et al.,2003;Cai,2006;Cai et al.,2005)for fixture design optimisation are based on single ideal/non-ideal compliant assembly models which are not sufficient to mitigate the error components associated with batch of assemblies.Robust fixture design is to make the output results insensitive to shape variation considering batch of parts to improve the product and process performance.The objective of this paper is to develop a novel robust methodology for fixture design optimisation by addressing a batch of non-ideal compliant assemblies.The proposed methodology is based on the concept of composite part(Das et al.,2015)which mainly quantifies the main shape error patterns/modes into composite parts coming from a Fixture Design OptimisationDas,Franciosa and Ceglarek158 batch of parts.Composite part can be defined as the part composed of all the major significant shape error components present in the population.In reality,the composite part may not exist but it reduces the efforts required for assembly process simulation as it composed of all the major shape error components.The composite parts and initial fixture locator strategies are taken as input for fixture modelling.The methodology involves selection of composite assemblies and optimisation to obtain the robust layout of the fixturing elements(i.e.,location of clamps).Therefore,it allows to optimise not only single assembly but batch of assemblies which presumably represents the production population and identifies robust fixture design parameters through optimisation to maximize the probability of joining feasibility index.A significant gap in the literature has been identified to optimise fixture design of non-ideal compliant parts.Table 1 reviews the state of art of the existing methods for fixture design optimisation.The paper has been arranged with the following sections:Section 3 describes the methodology which includes the overview of the shape error quantification for batch of parts,composite assembly selection strategy and optimisation formulation.Section 4 demonstrates the applicability through industrial cases with remote laser welding.Further,section 5 summarises the conclusions.Fixturing Scheme 3-2-1 fixture N-2-1 fixture Single part error based assembly Rearick et al.(1993);Ceglarek(1998);Li et al.(2008b)Cai et al.(1996);Cai(2008);Camelio et al.(2004a);Li et al.(2001);Li et al.(2008a);Li et al.(2010);Yu et al.(2008);Franciosa et al.(2011)Batch of parts error based assembly-Proposed in this paper Table 1:Review of fixture design methods with current research gap 2 Fixture Optimisation Methodology Overview The proposed methodology is composed of three stages.Firstly,part shape variation is determined using part measurement data for batch of parts through quantifying the shape errors into few composite parts;and initial process configuration,i.e.,joint locations,initial fixture locations(clamps,support blocks,locators etc.)are as initial process input.Thereafter,the finite element modelling for fixture simulation has been performed considering composite parts,fixture elements and contact pairs using Variation Response Method(VRM)software which is a Matlab based finite element modelling software toolkit with capabilities of fast modelling specific features required by assembly process(Franciosa et al.,2015).VRM is a new comprehensive methodology for dimensional management of assembly processes with compliant non-ideal parts which allows to analytically model the product-to-process interaction.At this stage,fewer composite assemblies have been Figure 1:Overview of fixture design optimisation methodology.Initial Process Information(CAD specs,Locator Strategy)Part Measurement(Batch of Parts)2.1 Batch of Parts Modelling Statistical Geometric Modal Analysis(SGMA)Composite PartsOptimum Layout2.2 Composite Assembly Selection Composite Assemblies with Map Index(MI)Eq.(3)Correlation Criteria Based Clustering Eq.(5)Entropy Based Assembly Selection Eq.(8)2.3 Optimisation Strategy Formulation Analytical Surrogate model development Maximise Joining Feasibility Index Eq.(10)VRM Modelling EnvironmentFixture Design OptimisationDas,Franciosa and Ceglarek159 selected which quantifies the batch errors.Finally,the nonlinear optimisation has been carried out on the defined KPCs to obtain the optimised fixture layout by varying the KCCs(clamp locations).Optimiser updates the variables that are KCCs of the process to maximise the joining feasibility index.Figure 1 illustrates the fixture design optimisation methodology considering batch of parts and initial process information under the VRM modelling environment.2.1 Batch of Parts Modelling Overview To characterise and quantify the part shape variation associated with a batch of parts,Das et al.(2015)developed Statistical Geometric Modal Analysis(SGMA)methodology which identifies the main shape error patterns present in the individual parts and merge them together using different criteria to create composite parts.The main objective of SGMA method is statistical characterisation of a batch of parts which are representative of production population.The individual part error modes are parameterised by means of its amplitude.The shape error modes are statistically characterised using non-parametric Kernel Density Estimator(KDE)which provide more accurate depiction of the shape variation.Data dimensional reduction approach,such as,Principal Component Analysis(PCA)has been utilized to extract deformation patterns from production data(Camelio et al.,2004b).However,PCA based decomposition is not suitable for shape error characterisation as it is incapable for detection of process shift in primary data set or presence of different shape errors in the data(Matuszyk et al.,2010).Unfortunately,real process of part stamping clearly exhibit different grouping of shape errors in within-run production and process shift in batch-to-batch production.Therefore,the measured part errors need to be decomposed independently to provide more accurate estimation of underlying shape errors.The SGMA method eliminates the challenges and model batch of parts error more accurately.The proposed SGMA methodology involves significant modes identification from a batch of parts,statistical characterisation of extracted modal signatures.The quantification of shape variation engraved with a batch of parts has been achieved through synthesising composite parts which are composed of major error components from the batch.Relying on the energy compaction criteria,a number of composite parts can be created where the composite parts contain the major shape errors present in the batch of parts.The overview of the SGMA method for composite part creation has been shown in Figure 2.Further,depending upon the type of shape error modes present in the batch of parts,using K-means clustering process,the parts are grouped in few clusters exhibit similar type of errors.Thereafter,energy compaction criteria have been applied to obtain the composite parts for each cluster.Therefore,using maximum,minimum and average energy compaction criteria,three composite parts created for each cluster.These composite parts behave differently in assembly system due to the part-to-part interaction.The proposed SGMA method has been applied to model and quantify part shape variation of a batch of sheet metal parts produced by stamping process and these composite parts are used for fixture design optimisation.Figure 2:Overview of the SGMA method(i)batch of parts measurement,(ii)SGMA method and statistical characterisation,and(iii)synthesis of composite part using SGMA.Original Deviation(Batch of Parts)SGMA Method&Statistical CharacterisationComposite Parts420-2-4Dev mm0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2-4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4420-2-4Dev mm-4420-2-4Dev mm1.41.00.60.2x 10-2-100 -50 0 50 100 1501.20.80.4x 10-30 1000 2000 30001.00.80.60.40.2x 10-3-2000 -1000 0 500Dev mm3210-1-2-3Main Error PatternsStatistical Distribution of Error Patterns(i)(ii)(iii)Fixture Design OptimisationDas,Franciosa and Ceglarek160 2.2 Composite Assembly Selection Relying on the creation of composite parts and number of parts present in an assembly,several different composite assemblies can be created by considering the exhaustive combination of all composite parts.For example,in an assembly operation M number of parts(?)are to be joined which is consist of?number of KPCs?,where?represents the part id and?represents the ith KPC in the assembly.The assembly consists of L number of KCCs.Therefore,depending upon the types of shape error present in a batch,parts may be grouped into?number of clusters.For each cluster,a total three composite parts can be created depending on maximum,minimum and average energy compaction criteria,i.e.,?.Therefore,the assembly system can be written as?,max,min,max,min,:,1,2,:,1,2,:,1,2,:,:istmlmmm avgMAXmgMINmgKPCsKPCiNPartsPTmMKCCsKCClLCompositePartsCPTCPTCPTMaximumCompositeParts CPTCPTMinimumCompositeParts CPTCPTAverageCompositeParts?,1,2,;1,2,AVGm avg gmCPTCPTwheremM gN?(1)Therefore,depending upon the number of clusters modelled for all the parts present in the assembly,the combination of composite assemblies also increases.The number of obtained composite assemblies can be formulated as?:MAXMINAVGCompositeAssembly CACPTCPTCPT?(2)As the each fixture simulation is time expensive,optimisation based on all composite assembly combination becomes computationally inefficient.Therefore,it emphasises on selection of few composite assemblies which are representative of all other assemblies.In order to reduce the assembly number for optimisation,two different criteria have been proposed:(i)Correlation Criteria Based Clustering and(ii)Entropy Based Assembly Selection.2.2.1.Correlation Criteria Based Clustering All combinations of composite parts are determined as per equation(2)to create complete set of composite assemblies.In order to achieve reduced number of composite assemblies for optimisation,a correlation threshold based clustering criteria introduced.It involves clustering of composite assemblies based on similar KPC Map Index(MI).MI depends on the type of KPCs selected such as point deviation,part-to-part gap distribution,surface area deformation etc.Considering the initial locator strategy(KCCs),such as given clamp layout and NC blocks,an initial fixture simulation provide part-to-part KPC map index for all the composite assemblies,?.A map index of a given iih KPC(?)of jth composite assembly can define as a function,(,)i ji jMIf CAKCC?(3)where the function f denotes the fixture simulation process composed of part-to-part interaction,boundary constraints,contact pair detection and part/assembly flexibility.Equation(3)represents the fixture simulation process with map index as an outcome.Subsequently,considering all the defined KPCs in the assembly,a total MI for the jth assembly can be evaluated as,Fixture Design OptimisationDas,Franciosa and Ceglarek161 ,1stNji jiTMIMI?(4)Similar error contained assemblies are expected to exhibit similar MI as all other parameters are kept constant.The correlation coefficient(?)between two assemblies(j and k)can be estimated as,?,22cov,jkj kjkTMITMI?(5)where,?and?,?represent the standard deviations of the total map index of?and?assembly respectively.Therefore,the correlation matrix has been determined for all composite assemblies and a user defined correlation threshold,?,has been applied to group the assemblies having the similar KPC map index.The composite assemblies can be clustered into fewer groups consist of similar type of map index distribution.This implies that one assembly from the specific cluster can be chosen for the optimisation and the obtained result should be optimum for all the assemblies belong to that cluster.2.2.2.Entropy Based Assembly Selection To select one representative assembly from each cluster for optimisation,entropy based selection criteria has been introduced.The analysis of the MIs content can be performed by borrowing tools that have been developed in the field of information theory.In particular,it is proposed to determine the Information(I)contained on MI,calculated for the?MI of?assembly(?)as(Suh,2005),2,logi ji jIp?(6)where?represents the probability of satisfying the joining requirements of?.This can be estimated as the ratio between the numbers of points in a MI satisfying the joining requirements over the total number of points of the MI.The closer?is to zero,the more likely that the parts can be joined in that particular surface.The entropy(?)for a complete assembly having?number of KPCs can be calculated,following Shannons definition involving the quantification of information by measuring the uncertainty in a MI,as(Cover and Thomas,2006),1stNji ji jiHpI?(7)The
收藏