三自由度微型飛行器模擬轉臺的設計
三自由度微型飛行器模擬轉臺的設計,三自由度微型飛行器模擬轉臺的設計,自由度,微型,飛行器,模擬,摹擬,轉臺,設計
南昌航空大學科技學院學士學位論文
中文譯文
液壓支架的最優(yōu)化設計
摘要:本文介紹了從兩組不同參數(shù)的采礦工程所使用的液壓支架(如圖1)中選優(yōu)的流程。這種流程建立在一定的數(shù)學模型之上。第一步,尋找四連桿機構的最理想的結構參數(shù)以便確保支架的理想的運動軌跡有最小的橫向位移。第二步,計算出四連桿有最理想的參數(shù)時的最大誤差,以便得出最理想的、最滿意的液壓支架。
圖1 液壓支架
關鍵詞:四連桿機構; 優(yōu)化設計; 精確設計; 模糊設計; 誤差
1.前言:設計者的目的時尋找機械系統(tǒng)的 最優(yōu)設計。導致的結果是一個系統(tǒng)所選擇的參數(shù)是最優(yōu)的。一個數(shù)學函數(shù)伴隨著一個合適的系統(tǒng)的數(shù)學模型的出現(xiàn)而出現(xiàn)。當然這數(shù)學函數(shù)建立在這種類型的系統(tǒng)上。有了這種數(shù)學函數(shù)模型,加上一臺好的計算機的支持,一定能找出系統(tǒng)最優(yōu)的參數(shù)。
Harl描述的液壓支架是斯洛文尼亞的Velenje礦場的采煤設備的一個組成部分,它用來支護采煤工作面的巷道。它由兩組四連桿機構組成,如圖2所示.四連桿機構AEDB控制絞結點C的運動軌跡,四連桿機構FEDG通過液壓泵來驅動液壓支架。
圖2中,支架的運動,確切的說,支架上絞結點C點豎向的雙紐線的運動軌跡要求橫向位移最小。如果不是這種情況,液壓支架將不能很好的工作,因為支架工作在運動的地層上。
實驗室測試了一液壓支架的原型。支架表現(xiàn)出大的雙紐線位移,這種雙紐線位移的方式回見少支架的承受能力。因此,重新設計很有必要。如果允許的話,這會減少支架的承受能力。因此,重新設計很有必要。如果允許的話,這種設計還可以在最少的成本上下文章。它能決定去怎樣尋找最主要的
圖2 兩四連桿機構
四連桿機構數(shù)學模型AEDB的最有問題的參數(shù)。否則的話這將有必要在最小的機構AEDB改變這種設計方案。
上面所羅列出的所有問題的解決方案將告訴我們關于最理想的液壓支架的答案。真正的答案將是不同的,因為系統(tǒng)有各種不同的參數(shù)的誤差,那就是為什么在數(shù)學模型的幫助下,參數(shù)允許的最大的誤差將被計算出來。
2.液壓支架的確定性模型
首先,有必要進一步研究適當?shù)囊簤褐Ъ艿臋C械模型。它有可能建立在下面所列假設之上:
(1)連接體是剛性的,
(2)單個獨立的連接體的運動是相對緩慢的.
液壓支架是只有一個方向自由度的機械裝置。它的運動學規(guī)律可以通過同步的兩個四連桿機構FEDG和AEDB的運動來模擬。最主要的四連桿機構對液壓支架的運動規(guī)律有決定性的影響。機構2只是被用來通過液壓泵來驅動液壓支架。絞結點C的運動軌跡L可以很好地來描述液壓支架的運動規(guī)律。因此,設計任務就是通過使點C的軌跡盡可能地接近軌跡K來找到機構1的最理想的連接長度值。四連桿機構1的綜合可以通過 Rao 和 Dukkipati給出運動的運動學方程式的幫助來完成。
圖3 點C軌跡L
圖3描述了一般的情況。
點C的軌跡L的方程式將在同一框架下被打印出來。點C的相對應的坐標x和y隨著四連桿機構的獨有的參數(shù)…一起被打印出來。
點B和D的坐標分別是
xB=x -cos (1)
yB=y -sin (2)
xD=x -cos() (3)
yD=y -sin() (4)
參數(shù)…也彼此相關
xB2 +yB2= (5)
(xD-α1)2+ yD2= (6)
把(1) - (4)代入(5)-(6)即可獲得支架的最終方程式
(x-cos)2+ (y- sin)2- =0 (7)
[x- cos()-]2+[ y- sin()]2- =0 (8)
此方程式描述了計算參數(shù)的理想值的最基本的數(shù)學模型。
2.1數(shù)學模型
Haug和Arora提議,系統(tǒng)的數(shù)學模型可以用下面形式的公式表示
min f(u,v), (9)
約束于
gi(u,v)0, i=1,2,…,l, (10)
和響應函數(shù)
hi(u,v)=0, j=1,2,…,m. (11)
向量 u=[u1,u2,…,un]T 響應設計時的變量, v=[v1,v2,…,vm]T是可變響應向量,(9)式中的f是目標函數(shù)。
為了使設計的主導四連桿機構AEDB達到最佳,設計時的變量可被定義為
u=[ ]T, (12)
可變響應向量可被定義為
v=[x y]T. (13)
相應復數(shù)α3,α5,α6的尺寸是確定的。
目標函數(shù)被定義為理想軌跡K和實際軌跡L之間的一些“有差異的尺寸”
f(u,v) =max[g0(y)-f0(y)]2, (14)
式中x= g0(y) 是曲線K的函數(shù),x= f0(y)是曲線L的函數(shù)。
我們將為系統(tǒng)挑選一定局限性。這種系統(tǒng)必須滿足眾所周知的最一般的情況。
(15)
(16)
不等式表達了四連桿機構這樣的特性:復數(shù)只可能只振蕩的。
這種情況:
(17)
給出了設計變量的上下約束條件。
用基于梯度的最優(yōu)化式方法不能直接的解決(9)–(11)的問題。
min un+1 (18)
從屬于
gi(u,v) 0, i=1,2,…,l, (19)
f(u,v)- un+10, (20)
并響應函數(shù)
hj(u,v)=0, j=1,2,…,m, (21)
式中:
u=[u1 … un un+1]T
v=[v1 … vn vn+1]T
因此,主導四連桿機構AEDB的一個非線性設計問題可以被描述為:
minα7, (22)
從屬于約束
(23)
(24)
,
(25)
(26)
并響應函數(shù):
(27)
(28)
有了上面的公式,使得點C的橫向位移和軌跡K之間的有最微小的差別變得可能。結果是參數(shù)有最理想的值。
3.液壓支架的隨機模型
數(shù)學模型可以用來計算比如參數(shù)確保軌跡 L 和 K 之間的距離保持最小。然而端點C的計算軌跡L可能有些偏離,因為在運動中存在一些干擾因數(shù)。看這些偏離到底合時與否關鍵在于這個偏差是否在參數(shù) 容許的公差范圍內。
響應函數(shù)(27)-(28)允許我們考慮響應變量v的矢量,這個矢量依賴設計變量v的矢量。這就意味著v=h (v),函數(shù)h是數(shù)學模型(22)-(28)的基礎,因為它描述出了響應變量v的矢量和設計變量v的矢量以及和數(shù)學模型中v的關系。同樣,函數(shù)h用來考慮參數(shù)的誤差值 的最大允許值。
在隨機模型中,設計變量的矢量u=[u1,…,un]T可以被看作U=[U1,…,Un]T的隨機矢量,也就是意味著響應變量的矢量v=[v1,…,vn]T也是一個隨機矢量V=[V1,V2,…,Vn]T
v=h(u) (29)
假設設計變量 U1,…,Un 從概率論的觀點以及正常的分類函數(shù)Uk~ (k=1,2,…,n)中獨立出來。主要參數(shù)和 (k=1,2,…,n)可以與如測量這類科學概念和公差聯(lián)系起來,比如=,。所以只要選擇合適的存在概率
, k=1,2,…,n (30)
式(30)就計算出結果。
隨機矢量 V 的概率分布函數(shù)被探求依賴隨機矢量 U 概率分布函數(shù)及它實際不可計算性。因此,隨意矢量 V 被描述借助于數(shù)學特性,而這個特性被確定是利用Taylor的有關點 u=[u1,…,un]T 的函數(shù)h逼近描述,或者借助被Oblak和Harl在論文提出的Monte Carlo 的方法。
3.1 數(shù)學模型
用來計算液壓支架最優(yōu)化的容許誤差的數(shù)學模型將會以非線性問題的獨立的變量
w=[ ] (31)
和目標函數(shù)
(32)
的型式描述出來。
約束條件
(33)
,
(34)
在式(33)中,E是是坐標C點的x 值的最大允許偏差,其中
A={1,2,4} (35)
非線性工程問題的計算公差定義式如下:
(36)
它服從以下條件:
(37)
, (38)
(39)
4.有數(shù)字的實列
液壓支架的工作阻力為1600kN。以及四連桿機構AEDB及FEDG 必須符合以下要求:
-它們必須確保鉸接點C 的橫向位移控制在最小的范圍內,
-它們必須提供充分的運動穩(wěn)定性
圖2中的液壓支架的有關參數(shù)列在表1 中。
支撐四桿機構 FEDG 可以由矢量
(mm) (40)
來確定。
四連桿AEDB 可以通過下面矢量關系來確定。
(mm)
在方程(39)中,參數(shù)d是液壓支架的移動步距,為925mm .四連桿AEDA的桿系的有關參數(shù)列于表2中。
表 1 液壓支架的參數(shù) 表 2 四連桿AEDA的參數(shù)
4.1四連桿AEDA的優(yōu)化
四連桿的數(shù)學模型AEDA的相關數(shù)據(jù)在方程(22)-(28)中都有表述。(圖3)鉸接點C雙紐線的橫向最大偏距為65mm。那就是為什么式(26)為
(41)
桿AA與桿AE之間的角度范圍在76.8o和94.8o之間,將數(shù)…依次導入公式(41)中所得結果列于表3中。
這些點所對應的角…都在角度范圍[76.8o,94.8o]內而且它們每個角度之差為1o
設計變量的最小和最大范圍是
(mm) (42)
(mm) (43)
非線性設計問題以方程(22)與(28)的形式表述出來。這個問題通過
Kegl et al(1991)提出的基于近似值逼近的優(yōu)化方法來解決。通過用直接的區(qū)分方法來計算出設計派生數(shù)據(jù)。
設計變量的初始值為
(mm) (44)
優(yōu)化設計的參數(shù)經(jīng)過25次反復計算后是
表3 絞結點C對應的x與y 的值
角度
x初值(mm)
y初值(mm)
x終值(mm)
y終值(mm)
76.8
66.78
1784.87
69.47
1787.50
77.8
65.91
1817.67
68.74
1820.40
78.8
64.95
1850.09
67.93
1852.92
79.8
63.92
1882.15
67.04
1885.07
80.8
62.84
1913.85
66.12
1916.87
81.8
61.75
1945.20
65.20
1948.32
82.8
60.67
1976.22
64.29
1979.44
83.8
59.65
2006.91
63.46
2010.43
84.8
58.72
2037.28
62.72
2040.70
85.8
57.92
2067.35
62.13
2070.87
86.8
57.30
2097.11
61.73
2100.74
87.8
56.91
2126.59
61.57
2130.32
88.8
56.81
2155.80
61.72
2159.63
89.8
57.06
2184.74
62.24
2188.67
90.8
57.73
2213.42
63.21
2217.46
91.8
58.91
2241.87
64.71
2246.01
92.8
60.71
2270.08
66.85
2274.33
93.8
63.21
2298.09
69.73
2302.44
94.8
66.56
2325.89
70.50
2330.36
(mm) (45)
在表3中C點x值與y 值分別對應開始設計變量和優(yōu)化設計變量。
圖 4 用圖表示了端點 C開始的雙紐線軌跡 L(虛線)和垂直的理想軌跡K(實線)。
圖4 絞結點C 的軌跡
4.2 四連桿機構AEDA的最優(yōu)誤差
在非線性問題(36)-(38),選擇的獨立變量的最小值和最大值為
(mm) (46)
(mm) (47)
獨立變量的初始值為
(mm) (48)
軌跡偏離選擇了兩種情況E=0.01和E=0.05。在第一種情況,設計變量的理想公差經(jīng)過9次反復的計算,已初結果。第二種情況也在7次的反復計算后得到了理想值。這些結果列在表 4和表5 中。
圖 5和圖 6的標準偏差已經(jīng)由Monte Carlo方法計算出來并表示在圖中(圖中雙點劃線示)同時比較泰勒近似法的曲線(實線)。
圖5 E=0.01時的標準誤差
圖6 E=0.05時的標準誤差
5.結論
通過選用系統(tǒng)的合適的數(shù)學模型以及采用數(shù)學函數(shù),讓液壓支架的設計得到改良,而且產(chǎn)品的性能更加可靠。然而,由于理想誤差的結果的出現(xiàn),將有理由再考慮一個新的問題。這個問題在四連桿的問題上表現(xiàn)的尤為突出,因為一個公差變化稍微都能導致產(chǎn)品成本的升高。
10
收藏