噴涂機器人設計—機身系統(tǒng)設計
噴涂機器人設計—機身系統(tǒng)設計,噴涂機器人設計—機身系統(tǒng)設計,噴涂,機器人,設計,機身,系統(tǒng)
南 京 理 工 大 學
畢業(yè)設計說明書(論文)
作 者:
王一峰
學 號:
060104240
學院(系):
機械工程學院
專 業(yè):
機械工程及自動化
題 目:
噴涂機器人設計
—機身系統(tǒng)設計
副教授
郭鋼
指導者:
(姓 名) (專業(yè)技術(shù)職務)
胡小秋
副教授
評閱者:
(姓 名) (專業(yè)技術(shù)職務)
2010年 6 月
畢業(yè)設計說明書(論文)中文摘要
本文主要介紹的是一種噴涂機器人的總體方案論證與機身系統(tǒng)的設計。首先根據(jù)技術(shù)要求,確定機器人的結(jié)構(gòu)型式為關節(jié)型,驅(qū)動方式選擇步進電機驅(qū)動,由工作空間計算出大、小臂尺寸,控制方式為開環(huán)連續(xù)軌跡控制,手把手示教。其次設計了噴涂機器人的機身系統(tǒng),設計過程中先選擇了步進電機的型號,然后確定傳動方式選擇齒輪傳動帶動腰部轉(zhuǎn)動,其中齒輪傳動為二級圓柱直齒輪減速傳動,并對傳動系統(tǒng)中齒輪、軸、軸承進行了設計與校核。
關鍵詞 噴涂機器人 機身系統(tǒng) 齒輪傳動 步進電機
畢業(yè)設計說明書(論文)外文摘要
Title Design of a spray painting robot
——Design of the fuselage system
Abstract
This paper is an overall introduction in conceptual design and study of painting robot, which demonstrates the design of system in certain robot. Firstly under the technical requirements, choose the structure of the robot as articulated robot, stepper motor as driver. Arm size is decided by calculating the working space. Control mode is open-loop control method for the continuous trajectory control, hands-teaching. This is followed by the design of the painting robot systems. In the design process, first the model of the stepper motor is selected, and then the driving mode is determined that is back rotation is driven by transmission gear. Toothed gearing is double-geared spur gear reduced drive. Gear, shaft, bearings in the transmission system is designed and checked.
Keywords coating robot Fuselage system Gear-driven stepper motor
本 科 畢 業(yè) 論 文 第 Ⅰ 頁 共 Ⅰ 頁
目 次
1 引言 1
1.1 噴涂機器人的概述 1
1.2 噴涂機器人的應用 1
1.3 噴涂機器人發(fā)展趨勢 2
1.4 課題研究意義 2
2 噴涂機器人的總體設計 3
2.1 噴涂機器人坐標系的確定 3
2.2 工作空間的設計 4
2.3驅(qū)動方式的確定 6
2.4 傳動方式的確定 7
2.5平衡方式的選擇 7
3 機身的設計 9
3.1 步進電機的選擇 9
3.1.1步進機選擇的注意事項 9
3.1.2 步進機的選擇 9
3.1.3 各軸轉(zhuǎn)速 11
3.1.4 各軸轉(zhuǎn)矩 12
3.1.5 制作參數(shù)表 12
3.2 齒輪的設計計算 12
3.2.1高速齒輪的設計與計算 12
3.2.2 低速級齒輪傳動的設計計算 17
3.3 軸的結(jié)構(gòu)設計 21
3.3.1 高速軸的結(jié)構(gòu)設計 22
3.3.2 中間軸的結(jié)構(gòu)設計 25
3.3.3 低速軸的結(jié)構(gòu)設計 28
3.4 軸承的校核 31
3.4.1 高速軸的壽命計算 32
3.4.2 中間軸的壽命計算 32
3.4.3 低速軸的壽命計算 32
3.5 腰部內(nèi)部電纜安裝方式 33
結(jié) 論 35
致 謝 36
參 考 文 獻 37
本科畢業(yè)設計說明書(論文) 第 37 頁 共 37 頁
1 引言
1.1 噴涂機器人的概述
噴涂機器人是一種典型的涂裝自動化裝備。使用機器人進行噴涂作業(yè),工件涂均勻,重復精度好,工作效率高,能使工人從惡劣的工作環(huán)境中解放出來。噴涂機器人廣泛應用于機床、汽車、家電等機電一體化產(chǎn)品制造領域,可以大大提高生產(chǎn)率、改善產(chǎn)品質(zhì)量, 能夠降低生產(chǎn)成本、改善勞動條件,能迅速適應快速變化的市場需求[1]。因此,噴涂機器人在制造業(yè)中的應用越來越得到人們的重視。
從1962年美國研制出第一臺工業(yè)機器人以來,工業(yè)機器人至今已經(jīng)走過了4O多年的歷程。由于噴涂作業(yè)屬于有害作業(yè),這些作業(yè)的勞動強度大,技術(shù)水平要求高,并且手工噴涂人員會因技術(shù)、體力等因素造成產(chǎn)品質(zhì)量缺陷,因此為了改善勞動條件和提高產(chǎn)品質(zhì)量產(chǎn)量降低成本,這個領域中大量地使用了機器人[2]。
1.2 噴涂機器人的應用
西方發(fā)達國家90年代以來汽車噴涂中的各噴涂工序普遍實現(xiàn)了自動化,隨著科技的發(fā)展,近十年機器人在工業(yè)現(xiàn)場已呈現(xiàn)出廣泛使用的趨勢。由于使用機器人噴涂均勻性好,重復精確度遠遠高于人工,因此避免了手工噴涂人員因技術(shù)、情緒、體力等因素造成的產(chǎn)品質(zhì)量缺陷,使工件噴涂質(zhì)量有了根本性的保障。由于噴涂作業(yè)屬于有害作業(yè),采用機器人作業(yè)可大大降低工人的勞動強度,提高生產(chǎn)效率,同時由于機器人在噴涂過程中流量、扇面、霧化的大小均可隨時調(diào)整,可大大減少油漆的損耗,提高油漆的利用率。對于塑料工件需要先期進行火焰處理,高溫環(huán)境作業(yè)危險性大,采用機器人完成工件的火焰處理不失為一個好方法[3]。
隨著機器人與電控技術(shù)的提高,機器人噴涂以其靈活、噴涂軌跡自由以及涂裝質(zhì)量高等優(yōu)點,受到各大汽車廠家的青睞,并被逐漸應用于車身噴涂。機器人噴涂漆膜性能的提高很大程度上取決于仿真車身的噴涂軌跡,這也決定了不同的車型必須對機器人噴涂軌跡進行仿真,為此研究出了機器人仿形技術(shù)。
隨著我國建筑業(yè)的發(fā)展,針對建筑涂裝機器人的特點,設計了基于嵌入式結(jié)構(gòu)的智能測控系統(tǒng),現(xiàn)場實驗表明,具有較強的抗干擾能力和電磁兼容性,適合在強干擾環(huán)境下長期穩(wěn)定可靠工作[4]。
1.3 噴涂機器人發(fā)展趨勢
新一代涂裝機器人的設計貫徹了模塊化結(jié)構(gòu)的原則,機器人可以配備不同的連接裝置,這樣既能夠以固定方式工作也可以安裝在軌道上工作。軌道可以固定在噴涂室側(cè)壁上,也可以固定在靠近天花板的位置。如果把噴涂機器人的霧化噴槍改成操作夾具,就成為操作開門的機器人了,因為兩種機器人的驅(qū)動系統(tǒng)是一樣的。
機器人噴涂時的空間占有面積將更進一步降低,減小噴漆室的尺寸和通風量,進而降低生產(chǎn)過程中的能源消耗。總之, 一切以降低生產(chǎn)成本、節(jié)約能源和保護環(huán)境為目的。未來的機器人將具有更優(yōu)異的運動學性能和加速度性能、更大的工作范圍、更小的占地面積及更加靈活手臂[5]。
噴涂機器人工作臂的運動方式可以選擇裝配成兩軸或三軸的。雙軸的機器人配合高速旋轉(zhuǎn)的噴槍,以旋轉(zhuǎn)對稱的運動方式工作,這樣能減少一個驅(qū)動軸,減輕重量、簡化設計。
1.4 課題研究意義
縱觀50余年來噴涂機器人對人類生活的改變所做出的貢獻,其對于提高勞動效率、減輕工人的作業(yè)危險、美化人類的視覺等方面均起到了不小的作用。如今噴涂機器人的應用越來越廣泛,需求也越來越大,再加上其經(jīng)濟性也隨著科技的進步而愈發(fā)突出,所以對涂裝機器人的研究是相當有意義的。
利用這次畢業(yè)設計的機會,通過對噴涂機器人的總體尤其是機身系統(tǒng)的設計,可以對大學四年的所學各門課程做一次很好的總結(jié)。
2 噴涂機器人的總體設計
根據(jù)設計要求,該機器人具有5個自由度,采用步進電機驅(qū)動,工作負載重量2 kg,各部件的運動范圍為:機身±110o;下臂前俯30o,后仰10o;上臂俯仰±30o;腕轉(zhuǎn)
±110o;腕擺±110o,工作空間為 2600×1200×900,重復定位精度±3~±6㎜。
2.1 噴涂機器人坐標系的確定
(1)直角式坐標機器人:
直角坐標機器人概念:工業(yè)應用中,能夠?qū)崿F(xiàn)自動控制的、可重復編程的、多功能的、多自由度的、運動自由度間成空間直角關系、多用途的操作機。他能夠搬運物體、操作工具,以完成各種作業(yè)。關于機器人的定義隨著科技的不斷發(fā)展,在不斷的完善,直角坐標機器人作為機器人的一種,其含義也在不斷的完善中。
直角坐標機器人的特點
a最高達到三個線性運動自由度的運動,每個運動自由度之間的空間夾角為直角;
b自動控制的,可重復編程,所有的運動均按程序運行;
c一般由控制系統(tǒng)、驅(qū)動系統(tǒng)、機械系統(tǒng)、操作工具等組成。
d可以適合于比較大的、四方形的工作空間內(nèi)工作。
e相比其他工業(yè)機器人,承重能力可以達到比較高。
f框架結(jié)構(gòu)的設計適合于模塊化系統(tǒng)的實現(xiàn)。
(2)球(極)坐標式機器人:
球坐標是一種三維坐標。分別有原點、方位角、仰角、距離構(gòu)成。 設P(x,y,z)為空間內(nèi)一點,則點P也可用這樣三個有次序的數(shù)r,φ,θ來確定,其中r為原點O與點P間的距離,θ為有向線段與z軸正向所夾的角,φ為從正z軸來看自x軸按逆時針方向轉(zhuǎn)到有向線段的角,這里M為點P在xOy面上的投影。這樣的三個數(shù)r,φ,θ叫做點P的球面坐標
圖2.1 球坐標機器人工作空間
(3)圓柱坐標式機器人:
圓柱坐標型機器人。包括上下圓盤的旋轉(zhuǎn)臺相對于包括上下固定板的框架 旋轉(zhuǎn)。絲杠和導桿安裝在上下圓盤上。第一螺母總成安裝到絲杠。第二螺母安裝 到導桿,第一螺母總成和第二螺母安裝在移動件上。軸結(jié)構(gòu)包括:具有縱向空腔的內(nèi)軸,外軸和一中間軸,它們與內(nèi)軸同心并可分開地旋轉(zhuǎn)。設有一對臂驅(qū)動軸的臂支撐框架安裝在軸結(jié)構(gòu)上。設有第一、第二和第三驅(qū)動裝置,相對于框架旋轉(zhuǎn)臺,相對于旋轉(zhuǎn)臺旋轉(zhuǎn)絲杠,并相對于旋轉(zhuǎn)臺旋轉(zhuǎn)各軸。
(4)關節(jié)式坐標機器人:
這類機器人由兩個肩關節(jié)和一個肘關節(jié)進行定位,由2個或3個腕關節(jié)進行定向。這種構(gòu)件動作靈活,工作空間大,在作業(yè)空間內(nèi)手臂的干涉最小,結(jié)構(gòu)緊湊,占地面積小,關節(jié)上相對運動部位容易密封防塵,這類機器人運動學較復雜,運動學反解困難;確定末端件的位姿不直觀,進行控制時,計算量比較大[6]。
現(xiàn)在噴涂機器人絕大多數(shù)使用的是關節(jié)式坐標結(jié)構(gòu),通過對以上4種形式的機器人的分析,關節(jié)式機器人由于其動作的靈活性、工作空間大、結(jié)構(gòu)緊湊、占地面積小、關節(jié)部位容易密封防塵的優(yōu)點,所以決定采用這種結(jié)構(gòu)形式。本方案設計的噴涂機器人只需5個自由度就能滿足要求,分別是:機身±110o;下臂前俯30o,后仰10o;上臂俯仰±30o;腕轉(zhuǎn)±110o;腕擺±110o。
2.2 工作空間的設計
圖2.2是機器人工作空間的示意圖,圖中,、分別為大臂、小臂的長度;、分別為大臂的仰俯角度;、分別為小臂的仰俯角度。
根據(jù)工作空間的范圍:長×寬×高=2600×1200×900,結(jié)合示意圖2.2可以得到以下關系式:
2(12l1+l2)=2600 (2-1)
l1cosθ1min+l2sin(θ1min+θ2min)+l2sin(θ2min+θ2max)- l1cosθ1max=900 (2-2)
(l1sinθ1max + l2 ) (1+sin(θ1max-θ1min))=1200 (2-3)
圖2.2 噴涂機器人工作空間示意圖
由于=10°,=30°,=30°,=30°,將數(shù)據(jù)代入上述關系式可以求解得到:
取整得l1=1100mml2=1200mm
2.3驅(qū)動方式的確定
機器人驅(qū)動就是機電一體化系統(tǒng)中的執(zhí)行裝置。執(zhí)行裝置就是按照電信號的指令,將來自電、液壓和氣壓等各種能源轉(zhuǎn)換成旋轉(zhuǎn)運動、直線運動等方式的機械能的裝置。按利用的能源來分類,主要可分為電動執(zhí)行裝置、液壓執(zhí)行裝置和氣動執(zhí)行裝置。
a 直接驅(qū)動電機:
優(yōu)點:不用齒輪減速器直接驅(qū)動,因此具有無間隙、摩擦小、機械剛度高等優(yōu)點,可以實現(xiàn)高速、高精度的位置控制和微笑力控制。
缺點:因為沒有減速機構(gòu),所以容易受載荷的影響。
種類:直流力矩電機 無刷直流電機 VR式電機等
b 液壓驅(qū)動的特點:
優(yōu)點:(1)容易獲得比較大的扭矩和功率。
(2)功率/重量比大,可以減少執(zhí)行裝置的體積。
(3)剛度高,能夠?qū)崿F(xiàn)高速、高精度的位置控制。
(4)通過流量控制可以實現(xiàn)無級變速。
缺點:(1)必須對油的溫度和污染進行控制,穩(wěn)定行較差。
(2)有因漏油而發(fā)生火災的危險。
(3)液壓油源和進油、回油管路等附屬設備占空間大。
c 氣動驅(qū)動的特點:
優(yōu)點:(1)利用氣缸可以實現(xiàn)高速直線運動。
(2)利用空氣的可壓縮性容易實現(xiàn)力控制和緩沖控制
(3)無火災危險和環(huán)境污染。
(4)系統(tǒng)結(jié)構(gòu)簡單,價格低。
缺點:(1)由于空氣的可壓縮性,高精度的位置控制和速度控制都比較難,驅(qū)動剛性比較差。
(2)雖然撞停等簡單動作速度較高,但在任意位置上停止的動作速度很慢。
(3)噪音大。
由于直流電機換相器經(jīng)常維護,電刷極易磨損,必須經(jīng)常更換,噪音比較大。交流伺服電動機則一般驅(qū)動功率較大且價額昂貴。步進電機是一種將電脈沖轉(zhuǎn)化為角位移的執(zhí)行機構(gòu)。即當步進驅(qū)動器接受到一個脈沖信號,它就驅(qū)動步進電機按設定的方向轉(zhuǎn)動一個固定的角度(即步距角).優(yōu)點:控制較容易,維修也較方便,而且控制為數(shù)字化?;诖耍x擇用步進電動機作為涂裝機器人的驅(qū)動方式[7]。
2.4 傳動方式的確定
1) 齒輪傳動:具有響應快,扭矩大,剛性好,可實現(xiàn)旋轉(zhuǎn)反方向的改變和復合傳動的特點,軸間距不大,應用腰、腕關節(jié)。
2) 鏈傳動:具有速比小,扭矩大,剛度與張緊裝置有關的特點,軸間距大,應用腕關節(jié)。
3) 渦輪傳動:具有大速比,交錯軸,體積小,回差小,響應快,剛度好,轉(zhuǎn)矩大,效率低,發(fā)熱大的特點,軸間交錯不大,應用腰關節(jié),手爪機構(gòu)。
4) 齒形帶傳動:具有速比小,轉(zhuǎn)矩小,剛性差,無間隙的特點,軸間距大,應用各關節(jié)的一級傳動。
5) 鏈傳動: 具有速比小,扭矩大,剛度與張緊裝置有關的特點,軸間距大, 應用腕關節(jié)。
根據(jù)對以上各種傳動方式的特點和應用場合等分析,針對噴涂機器人,機身的轉(zhuǎn)動采用兩級齒輪傳動;大臂和小臂的擺動采取步進電機驅(qū)動滾珠絲杠來實現(xiàn);腕部的轉(zhuǎn)動通過一級鏈傳動和一級錐齒輪傳動來實現(xiàn);腕部的擺動直接通過兩級鏈傳動來實現(xiàn)。為減輕自重,將小臂電機裝在大臂伸出板上,同時將腕部的電機安裝在大臂的底部以降低重心。
2.5平衡方式的選擇
得到采用彈簧平衡方法,其能夠減小手把手示教負載,也減小大、小臂驅(qū)動電機的工作負載。結(jié)構(gòu)簡單,減小占地面積。
下圖是噴涂機器人的總體裝配示意圖:
1-機身 2-小臂驅(qū)動電機 3-大臂 4-腕部驅(qū)動電機 5-小臂 6-機身驅(qū)動電機
圖2.3 噴涂機器人總體裝配示意圖
3 機身的設計
3.1 步進電機的選擇
3.1.1步進機選擇的注意事項
1) 一般應選用力矩比實際需要大百分之五十到百分之百的步進電機,因為步進電機不能過負載運行,即便是瞬間過載都可能造成失步、停轉(zhuǎn)或不規(guī)則原地來回作動。
2) 上位控制器輸入的脈沖電流必須夠大(一般要>10mA),以確保光電耦合器穩(wěn)定導通,否則會導致步進電機失步;如果輸入脈沖頻率過高,會因個別脈沖接收不到,導致步進電機失步。
3) 啟動頻率不應太高,應在啟動程序中設置加速過程,即從規(guī)定的啟動頻率開始,加速到設定頻率,否則就可能不穩(wěn)定,甚至處于惰態(tài)。
4) 電機如果未固定好,造成強烈共振,也會導致步進電機失步。
5) 應了解步進電機的固有弱點:輸入脈沖頻率過高,易導致丟步;輸入脈沖頻率過低,易出現(xiàn)共振;轉(zhuǎn)速偏高時扭矩降低明顯。
6) 應了解最新型步進電機的性能,必要時選用采用了最新控制技術(shù)的高級步進電機系統(tǒng),高級系統(tǒng)既可以使步進電機在高速狀態(tài)下減少共振,還能運用減少步進電機反電動勢的技術(shù),增加電機在高速狀態(tài)下的扭矩[8]。
圖3.1傳動示意簡圖
3.1.2 步進機的選擇
M = M+M (3-1)
M為慣性力矩,M為摩擦力矩。
M= (3-2)
令=0.5s, =1.05rad/s[10]
由同組計算得出:
I大=5.53kg.m2,m=20kg
I小=7.65kg.m2,m=30kg
大臂轉(zhuǎn)動慣量, 小臂轉(zhuǎn)動慣量
m為大臂質(zhì)量, m小臂質(zhì)量
代入公式(3-2)得:M=26.36N.m
M=0.1 M (3-3)
代入公式(3-1)得:M=29.3N.m
即T輸出=29.3N.m
M電機=M/ia
傳動比為ia=14.65
i1=1.4i2
i1=4.5,i2=3.2
1軸(高速軸):T1=To?i0?η01=M電機 (3-4)
2軸(中間軸):T2=T1?i1?η12
3軸(低速軸):T3=T2?i2?η23=29.3N?m
得出T1=M電機=2.085N.m,T2=9.27N.m
表3.1下面是一些常州市新月電機有限公司的步進電機型號
圖3.2步進電機外形簡圖
綜合考慮步進電機的轉(zhuǎn)距和尺寸,選擇步進電機為86BYG3501型號[11] T=2.5N.m。
即T1=2.5N.m
由(3-4)再次計算得出:
i1=4.2, i2=3
T2=10.37N.m,T3=30.74N.m>M 滿足條件
3.1.3 各軸轉(zhuǎn)速
n1=nmi0 (3-5)
式中 nm—電動機滿載轉(zhuǎn)速r/min;i0—電動機軸至1軸的傳動比。
高速軸:n1=n2i1=30*4.2=126 r/min
中間軸:n2=n3i2=10*3=30 r/min
低速軸:n3=w×602π=10 r/min
3.1.4 各軸轉(zhuǎn)矩
T1=Td?i0?η01 (3-6)
將參數(shù)代入(3-6)得
高速軸: T1=T0?i0?01=2.5?1?1=2.5N?m
中間軸:T2=T1?i1?12=2.5?4.2?0.988=10.37N?m
低速軸:T3=T2?i2?23=10.37?3?0.988=30.74N?m
3.1.5 制作參數(shù)表
將上述計算結(jié)果列入表中,供以后設計計算使用
表3.2 傳動裝置的運動和動力參數(shù)表
軸
轉(zhuǎn)矩T(N?m)
轉(zhuǎn)速n(r/min)
電動機軸
2.5
126
1軸(高速軸)
2.5
126
2軸(中間軸)
10.37
30
3軸(低速軸)
30.74
10
3.2 齒輪的設計計算
3.2.1高速齒輪的設計與計算
a.選擇齒輪的類型、材料、精度和齒數(shù)
(1)按已知條件,選用直齒圓柱齒輪傳動。
(2)大小齒輪材料采用45鋼調(diào)質(zhì)處理,硬度為HBS217-255,可以提高大齒輪
齒面的疲勞
(3)精度選擇7級精度。
(4)選擇小齒輪齒數(shù)z1=20,則z2=uz1=4.2*20=84
b.按齒面接觸疲勞強度計算
根據(jù)以下設計公式進行計算:
d1t≥2.323KtT1?d?u±1u?ZεZEσH2 (3-7)
(1)確定上式中的各參數(shù)
① 試選載荷系數(shù)Kt=1.3;
② 小齒輪傳遞的扭矩為:T1=2N.m
③ 查設計手冊:選齒寬系數(shù)?d=0.6;
彈性影響系數(shù)ZE=189.8 MPa ;
查得大、小齒輪的接觸疲勞強度極限為
σHlim1=730 MPa ,σHlim2=670 MPa
④ 重合度系數(shù) Zε ,端面重合度
εa==1.88-3.32120+184cos00=1.677 (3-8)
Zε=4-εa3=4-1.6773=0.88 (3-9)
⑤ 計算應力循環(huán)次數(shù)
N1=60n1jLh=60×126×1×300×10×8=1.8×108 次
N2=1.8×1084.2=0.43×108 次
⑥ 查設計手冊,得接觸疲勞壽命系數(shù)KHN1=1.12,KHN2=1.21;
⑦ 計算接觸疲勞許用應力:取安全系數(shù)S=1,則
σH1=KHN1σHlim1S=1.12×730=817.6MPa
σH2=KHN2σHlim2S=1.21×670=810.7MPa
(2)計算
① 將σH中的較小的值代入公式(3-7)得
d1t≥2.323KtT1?d?u±1u?ZεZEσH2=2.32×31.3×25000.6?5.23.2?189.8×0.88810.72 = 16.52
② 計算小齒輪分度圓圓周速度v
v=πd1tn160×1000=π×16.52×12660×1000=0.11ms (3-10)
③ 計算齒寬b (3-11)
b=?dd1t=0.6×16.52=9.91mm
④ 計算齒寬和齒高之比b/h (3-12)
模數(shù)mt=d1tz1=16.5220=0.83mm
齒高h=2.25mt=2.25×0.83=1.87mm (3-13)
bh=9.91/1.87=5.3
⑤ 計算載荷系數(shù)
查設計手冊,由v=0.11ms,7級精度得Kv=1.05
KHα=KFα=1 KA=1.25 KHβ=1.25 KFβ=1.17
∴ 載荷系數(shù)K=KAKVKHαKHβ=1×1.05×1.25×1.25=1.64 (3-14)
⑥ 按實際載荷系數(shù)修正d1t,
d1=d1t3KKt=15.31×31.641.3=16.54mm (3-15)
⑦ 計算模數(shù) m
m=d1z1=16.5420=0.83 (3-16)
c.按齒根彎曲疲勞強度設計
設計公式為
m≥32KT1?dz12YFaYSaYεσF (3-17)
(1)確定設計公式中的參數(shù)
① 查設計手冊,得大、小齒輪的彎曲疲勞強度極限
σFE1=620 MPa,σFE2=570 MPa;
② 查設計手冊,得彎曲疲勞壽命系數(shù)KFN1=0.915,KFN2=0.96;
③ 計算彎曲疲勞許用應力:取安全系數(shù)S=1.4則
σF1=KFN1σFE1S=0.915×6201.4=405.2 MPa
σF2=KFN2σFE2S=0.96×5701.4=390.86MPa
④ 計算載荷系數(shù)K
K=KAKVKFαKFβ=1×1.05×1×1.17=1.755
⑤ 查設計手冊,得齒形系數(shù)YFa1=2.8,YFa2=2.2;
⑥ 查設計手冊,得應力校正系數(shù)YSa1=1.55,YSa2=1.78;
⑦ 計算重合度系數(shù)Yε=0.25+0.75εα=0.25+0.751.677=0.7;
⑧ 計算大、小齒輪YFaYSaσF的值
YFa1YSa1σF1=2.8×1.55405.2=0.011
YFa2YSa2σF2=2.2×1.78390.86=0.01
(2)計算齒輪模數(shù)
設計公式(3-17)中代人YFaYSaσF 中的較大值,得
m≥32KT1?dz12YFaYSaYεσF=32×1.755×2.5×1030.6×202×0.011=0.74
由計算結(jié)果可看出,由齒面接觸疲勞強度計算的模數(shù)m略大于由齒根彎曲疲勞強度計算的模數(shù),但由于齒輪模數(shù)m的大小主要取決于彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以,可取由彎曲強度計算得的模數(shù)0.74,并就近圓整為標準值m=1 mm。因按接觸強度算得的分度圓直徑d1=16.54mm,這時需要修正齒數(shù)
z1=d1m=16.541=16.54,取z1=17
則 z2=uz1=4.2×17=71.4,取z2=72
d. 幾何尺寸計算
(1)計算分度圓直徑
d1=mz1=1×17=17mm d1取20
d2=mz2=1×72=72mm
(2)計算中心距
a=12d1+d2=1220+72=46mm
(3)計算齒輪寬度
b=?dd1=0.6×20=10.8mm
取 b2=12,b1=b2+5=17mm
e.按齒根彎曲疲勞強度校核,根據(jù)式(9-8a)
250N
653MPa=810.7MPa
3.2.2 低速級齒輪傳動的設計計算
a.選擇齒輪的類型、材料、精度和齒數(shù)
(1)按已知條件,選用直齒圓柱齒輪傳動。
(2)大小齒輪材料采用45鋼調(diào)質(zhì)處理,硬度差為40HBS可以提高大齒輪齒面的疲勞。
(3)精度選擇7級精度。
(4)選擇小齒輪齒數(shù)z1=28,則z2=uz1=3×28=84
b.按齒面接觸疲勞強度計算
根據(jù)以下設計公式進行計算:
d1t≥2.323KtT1?d?u±1u?ZεZEσH2
(1)確定上式中的各參數(shù)
① 試選載荷系數(shù)Kt=1.3;
② 小齒輪傳遞的扭矩為: T3=30.74
③ 查設計手冊:選齒寬系數(shù)?d=0.6;
彈性影響系數(shù)ZE=189.8 MPa ;
大、小齒輪的接觸疲勞強度極限為
σHlim1=730 MPa ,σHlim2=670 MPa
④ 重合度系數(shù) Zε ,端面重合度
εa=1.88-3.32128+184cos00=1.725
Zε=4-εa3=4-1.7253=0.87
⑤ 計算應力循環(huán)次數(shù)
N1=60n1jLh=60×10×1×300×10×8=1.44×107 次
N2=1.44×1073.2=0.45×107 次
⑥ 查設計手冊,得接觸疲勞壽命系數(shù)KHN1=1.28,KHN2=1.38;
⑦ 計算接觸疲勞許用應力:取安全系數(shù)S=1,則
σH1=KHN1σHlim1S=1.28×730=1314MPa
σH2=KHN2σHlim2S=1.38×670=924.6MPa
(2)計算
① 將σH中的較小的值代入公式(3-1)得
d1t≥2.323KtT1?d?u±1u?ZεZEσH2 =2.32×31.3×30.74×1030.6?42?189.8×0.87924.62 =37.6 mm
② 計算小齒輪分度圓圓周速度v
v=πd1tn160×1000=π×37.6×1060×1000=0.019 ms
③ 計算齒寬b
b=?dd1t=0.6×37.6=22.56mm
④ 計算齒寬和齒高之比b/h
模數(shù)mt=d1tz1=37.628=1.34mm
齒高h=2.25mt=2.25×1.34=3mm
bh=22.563=7.52
⑤ 計算載荷系數(shù)
查設計手冊,由v=0.019ms,7級精度得Kv=1
KHα=KFα=1.1 KA=1.25 KHβ=1.256 KFβ=1.17
∴ 載荷系數(shù)K=KAKVKHαKHβ=1.25×1×1.1×1.256=1.727
⑥ 按實際載荷系數(shù)修正d1t,
d1=d1t3KKt=37.6×31.7271.3=41.3mm
⑦ 計算模數(shù) m
m=d1z1=41.328=1.47
c. 按齒根彎曲疲勞強度設計
設計公式為
m≥32KT1?dz12YFaYSaYεσF
(1)確定設計公式中的參數(shù)
① 查設計手冊,得大、小齒輪的彎曲疲勞強度極限σFE1=620 MPa,σFE2=570 MPa;
② 查設計手冊,得彎曲疲勞壽命系數(shù)KFN1=0.98,KFN2=0.99;
③ 計算彎曲疲勞許用應力:取安全系數(shù)S=1.4則
σF1=KFN1σFE1S=0.98×6201.4=607.6MPa
σF2=KFN2σFE2S=0.99×5701.4=403 MPa
④ 計算載荷系數(shù)K
K=KAKVKFαKFβ=1.25×1.1×1×1.17=1.61
⑤ 查設計手冊,得齒形系數(shù)YFa1=2.55,YFa2=2.2;
⑥ 查設計手冊,得應力校正系數(shù)YSa1=1.61,YSa2=1.78;
⑦ 計算重合度系數(shù)Yε=0.25+0.75εα=0.25+0.751.725=0.685;
⑧ 計算大、小齒輪YFaYSaσF的值
YFa1YSa1σF1=2.55×1.61607.6=0.00676
YFa2YSa2σF2=2.2×1.78403=0.0088
(2)計算齒輪模數(shù)
設計公式中代人YFaYSaσF 中的較大值,得m≥32KT1?dz12YFaYSaYεσF=1.23mm由齒面接觸疲勞強度計算的模數(shù)m略大于由齒根彎曲疲勞強度計算的模數(shù),但由于齒輪模數(shù)m的大小主要取決于彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以,可取由彎曲強度計算得的模數(shù)1.23并就近圓整為標準值m=2 mm。因按接觸強度算得的分度圓直徑d1=41.3mm這時需要修正齒數(shù)
z1=d1m=41.32=20.65,取z1=21
則 z2=uz1=3×21=63
d.幾何尺寸計算
(1)計算分度圓直徑
d1=mz1=2×21=42 mm
d2=mz2=2×63=126mm
(2)計算中心距
a=12d1+d2=1242+126=84 mm
(3)計算齒輪寬度
b=?dd1=0.6×42=25.2mm
取 b2=26,b1=b2+5=31mm
c.按齒根彎曲疲勞強度校核.
1464N
782.87MPa=924.6MPa
3.3 軸的結(jié)構(gòu)設計
軸的結(jié)構(gòu)設計就是確定軸的結(jié)構(gòu)形狀、各部分的直徑長度等全部尺寸。設計時應滿足下列基本要求:保證軸及軸上零件有準確的工作位置,固定可靠;軸上零件的拆裝和調(diào)整方便,軸具有良好的制造工藝性;軸的結(jié)構(gòu)有利于提高軸的強度、減輕應力集中等。軸的結(jié)構(gòu)設計的一般步驟如下:
1)初估軸的直徑
各軸可按承受純扭矩并降低許用應力(考慮彎矩的影響)的辦法來初估各軸的直徑d,其分式寫為:
d=A3pn (3-18)
式中:P—軸所傳遞的功率,kw;n—軸的轉(zhuǎn)速,r/min;A為軸的材料及承載情況確定的系數(shù),可查有關教材。對于非外伸軸,初估直徑常作為與傳動零件相配合的直徑(A取大值),并圓整為標準值;對于外伸軸,初估直徑作為外伸軸端直徑(A取小值),并圓整為標準值,若外伸軸有外接零件(聯(lián)軸器等),d應與外接零件孔徑一致(必要時作適當調(diào)整),并滿足鍵的強度要求。
2)擬定軸上零件的轉(zhuǎn)配方案并選擇支承的結(jié)構(gòu)型式
軸上零件的裝配方案及軸支承結(jié)構(gòu)型式的不同,軸的結(jié)構(gòu)形狀、尺寸也將不同,可通過分析比較選擇一個好的方案。
3)在上述1、2步驟的基礎上,考慮對軸結(jié)構(gòu)設計的基本要求,確定軸各段直徑及長度。
3.3.1 高速軸的結(jié)構(gòu)設計
1)初步確定軸的最小直徑
根據(jù)公式(3-5)初步確定軸的最小直徑。選取軸的材料為45鋼,調(diào)質(zhì)處理,查設計手冊,取A=110
P1=T1nw9550ηw=2.5×1269550×0.95×0.98=0.0354KW
dmin= A3pn=11030.0354126=7.2mm
2) 作用在齒輪上的力
Ft=2T1d=2×2.50.02=250N
Fr=Fttg20°=91N
輸入軸的最小直徑是用于安裝聯(lián)軸器。為使所選直徑d1與聯(lián)軸器的孔徑相適應,故需同時選取聯(lián)軸器型號。
聯(lián)軸器的計算轉(zhuǎn)矩Tca=KAT,考慮扭矩變化很小,取KA=1.3,則
Tca=KAT=1.3×2.5=3.25N?m
查設計手冊,選用YL3型凸緣聯(lián)軸器,公稱轉(zhuǎn)矩為25N?m[12]。從動端半聯(lián)軸器的孔徑d=14mm,所以選取軸徑d1=14mm;與軸配合的得孔長度為L=27mm,為保證軸端擋圈只壓在半聯(lián)軸器上而不壓在軸的端面上,軸長L1應略短于L,取L1=25mm。
3)擬定軸上零件的裝配方案
圖3.1 高速軸擬定裝配方案
左側(cè)軸承與擋油環(huán)從左側(cè)裝入,右側(cè)軸承、擋油環(huán)及聯(lián)軸器從右側(cè)裝入,齒輪采用齒軸一體設計。
下面是軸承上的扭矩和彎矩圖
圖3.2 支承軸結(jié)構(gòu)及受力分析
4 )求軸上支反力及彎矩
表3.3截面3處的彎矩
載荷
水平面H
垂直面V
支反力R
彎矩M
總彎矩
扭矩T
T=2.5N.m
計算彎矩
5) 按彎扭合成應力校核軸的強度
校核軸上承受最大計算彎矩的截面3處的強度
(3-19)
軸的材料為45鋼,查表11-1,。因此,故安全。
6)疲勞強度的校核
從應力集中對軸的疲勞強度的影響來看,截面3處引起的應力集中最嚴重,且所受力矩最大,所以只需校核截面3右側(cè)即可。
抗彎截面模量 W=0.1d3=0.1×203=800 mm
抗扭截面模量 WT=0.2d3=1600 mm
作用與截面3右側(cè)的彎矩M為
M=4.3N.m
作用與截面3上的彎矩M為
T3=2.5N.M
截面3右側(cè)的彎曲應力
σb=MW=4.3800=5.375MPa
截面3右側(cè)的扭轉(zhuǎn)應力
τT= T3WT=2.51600=1.56MPa
軸的材料為45鋼,調(diào)質(zhì)。查表得σB=640 MPa,σ-1=275MPa,τ-1=155MPa.
截面上由于軸肩而形成的理論應力集中系數(shù)及設計手冊選取。因查值得
=2.1, =1.7
查圖2-8可得軸的材料的敏感系數(shù)
qσ=0.7 qτ=1.7
所以有效應力集中系數(shù)為
kσ=1+qσ(ασ-1)=1.77
kτ=1+qτ(ασ-1)=1.5
查圖2-9得尺寸系數(shù)0.84、0.92
查圖2-11得表面質(zhì)量系數(shù)為 βσ=0.85,βr=0.91
軸按磨削加工,則綜合系數(shù)值為
Kσ=kσεα+1βσ-1=2.28
Kτ=kτετ+1βr-1=1.73
由材料系數(shù)取φσ=0.1 φr=0.05
計算安全系數(shù)Sca
Sσ= σ-1 Kσσb+Kσσm=22.5
Sτ= τ-1 Kττα+φττm=111.64
Sca=SσSτSσ2+Sτ2=22.1>S=1.5
所以安全
3.3.2 中間軸的結(jié)構(gòu)設計
1)初步確定軸的最小直徑
根據(jù)公式(3-5)初步確定軸的最小直徑。選取軸的材料為45鋼,調(diào)質(zhì)處理,查設計手冊,取A=110 則
dmin= A3pn=11030.03530=11.58mm
輸入軸的最小直徑是用于安裝滾動軸承。為使所選直徑d1與滾動軸承的孔徑相適應,故需同時選取滾動軸承的型號。根據(jù)計算的最小直徑,查設計手冊,選取深溝球軸承6001,d×D×B=12×28×8,故取最小軸徑d1=12mm。
2)求作用在齒輪上的力
Ft1=2T2d1=2×10.370.072=288N
Fr1=Ft1tg20°=104.8N
Ft2=2T2d2=2×10.370.042=493.8N
Fr2=Ft2tg20°=179.7N
3)擬定軸上零件的裝配方案
圖3.3 中間軸擬定裝配方案
圓柱齒輪、套筒、擋油環(huán)和滾動軸承從軸的左端裝入,右端滾動軸承和擋油環(huán)從右端裝入。
下面是軸承上的扭矩和彎矩圖
圖3.4 支承軸結(jié)構(gòu)及受力分析
4)求軸上支反力及彎矩
表3.4截面3處的彎矩
載荷
水平面H
垂直面V
支反力R
彎矩M
總彎矩
扭矩T
T=10.37N.m
計算彎矩
5) 按彎扭合成應力校核軸的強度
校核軸上承受最大計算彎矩的截面3處的強度
σca =McaW=26.72195.2×1000=12.17MPa
軸的材料為45鋼,查表11-1,。因此,故安全。
6)疲勞強度的校核
抗彎截面模量 W=0.1d3=0.1×283=2195.2 mm
抗扭截面模量 wT=0.2d3=4390.4 mm
作用與截面3左側(cè)的彎矩M為
M=26.7N.m
作用與截面3上的彎矩M為
T3=0N.M
截面3左側(cè)的彎曲應力
σb=MW=26.72195.2=12.17MPa
截面3左側(cè)的扭轉(zhuǎn)應力
τT= T3WT=O1600=0MPa
軸的材料為45鋼,調(diào)質(zhì)。查表得σB=640MPa,σ-1=275MPa,τ-1=155MPa.
截面上由于軸肩而形成的理論應力集中系數(shù)及查設計手冊選取。因
rd=0.328=0.011, Dd=3028=1.07查值
ασ=2.1
查圖2-8可得軸的材料的敏感系數(shù)
qσ=0.75
所以有效應力集中系數(shù)為
kσ=1+qσ(ασ-1)=1.825
查圖2-9得尺寸系數(shù)0.88
查圖2-11得表面質(zhì)量系數(shù)為 βσ=0.85
軸按磨削加工,則綜合系數(shù)值為
Kσ=kσεα+1βσ-1=2.25
由材料系數(shù)取φσ=0.1
計算安全系數(shù)Sca
Sσ= σ-1 Kσσb+φσσm=9.62>S
所以安全
3.3.3 低速軸的結(jié)構(gòu)設計
1)初步確定軸的最小直徑
根據(jù)公式(3-5)初步確定軸的最小直徑。選取軸的材料為45鋼,調(diào)質(zhì)處理,查設計手冊,取A=110 則
dmin= A3pn=11030.035×0.97×0.98810=16.47mm
2)求作用在齒輪上的力
Ft=2T1d=2×30.740.126=487.94N
Fr=Fttg20°=177.6N
輸入軸的最小直徑是用于安裝聯(lián)軸器。為使所選直徑d1與聯(lián)軸器的孔徑相適應,故需同時選取聯(lián)軸器型號。
聯(lián)軸器的計算轉(zhuǎn)矩Tca=KAT,考慮扭矩變化很小,取KA=1.3,則
Tca=KAT=1.3×30.74=40 N?m
3)擬定軸上零件的裝配方案
圖3.5低速軸擬定裝配方案
圓柱齒輪、套筒、擋油環(huán)和滾動軸承從軸的左端裝入,右端滾動軸承和擋油環(huán)從右端裝入。
下面是軸承上的扭矩和彎矩圖
圖3.6 支承軸結(jié)構(gòu)及受力分析
4)求軸上支反力及彎矩
表3.5截面3處的彎矩
載荷
水平面H
垂直面V
支反力R
彎矩M
總彎矩
扭矩T
T=30.74N.m
計算彎矩
5)按彎扭合成應力校核軸的強度
校核軸上承受最大計算彎矩的截面3處的強度
σca =McaW=34.446400×1000=5.38MPa
6)疲勞強度的校核
從應力集中對軸的疲勞強度的影響來看,截面3處引起的應力集中最嚴重,且所受力矩最大,所以只需校核截面3左側(cè)即可。
抗彎截面模量 W=0.1d3=0.1×403=6400mm
抗扭截面模量 WT=0.2d3=12800 mm
作用與截面3左側(cè)的彎矩M為
M=13.54N.m
作用與截面3上的彎矩M為
T3=30.74N.M
截面3左側(cè)的彎曲應力
σb=MW=13.546400=2.1MPa
截面3左側(cè)的扭轉(zhuǎn)應力
τT= T3WT=30.7412800=2.4MPa
軸的材料為45鋼,調(diào)質(zhì)。查表得σB=640MPa,σ-1=275MPa,τ-1=155MPa.
截面上由于軸肩而形成的理論應力集中系數(shù)及查設計手冊選取。因
rd=140=0.025, Dd=6040=1.5查值得
=2.1, =1.7
查圖2-8可得軸的材料的敏感系數(shù)
qσ=0.75 qτ=0.8
所以有效應力集中系數(shù)為
kσ=1+qσ(ασ-1)=1.825
kτ=1+qτ(ασ-1)=1.56
查圖2-9得尺寸系數(shù)0.85、0.75
查圖2-11得表面質(zhì)量系數(shù)為 βσ=0.9,βr=0.94
軸按磨削加工,則綜合系數(shù)值為
Kσ=kσεα+1βσ-1=2.26
Kτ=kτετ+1βr-1=1.9
由材料系數(shù)取φσ=0.1 φτ=0.05
計算安全系數(shù)Sca
Sσ= σ-1 Kσσb+Kσσm=57.94
Sτ= τ-1 Kττα+φττm=66.24
Sca=SσSτSσ2+Sτ2=43.6>S=1.5
所以安全
3.4 軸承的校核
3.4.1 高速軸的壽命計算
由圖3.1可知軸上的安裝軸承處直徑為20mm,所以選擇深溝球軸承16004 Cr=6.08KN,Car=3.78KN。
由公式:
Lh=10660n(ftCP)εh
計算軸承壽命。
n=126r/min C=3780N ε=3
由表3.3 p=RN12+Rv12=301N
查表得,溫度系數(shù)ft=1
代入得Lh=2.6×105,滿足使用要求
3.4.2 中間軸的壽命計算
由圖3.2可知軸上的安裝軸承處直徑為28mm,所以選擇深溝球軸承16006 Cr=6.08KN,Car=3.78KN[13]。
由公式:
Lh=10660n(ftCP)εh
計算軸承壽命。
n=30r/min C=3780N ε=3
由表3.4 p=RN12+Rv12=1255N
查表得,溫度系數(shù)ft=1
代入得Lh=1.52×104,滿足使用要求
3.4.3 低速軸的壽命計算
由圖3.5可知軸上的安裝軸承處直徑為40mm,由于軸要承受軸向和徑向力,所以選擇雙列深溝球軸承Cr=65.5KN,Cor=37.5KN。
由圖3.5看出R有兩部分組成,第一部分為軸上所受的支反力,表3.5已算出:
429N, 89N
經(jīng)計算,,,
所以
(3-20)
,查表13-5得
,查表13-5得
查表載荷系數(shù)=1.2,軸承當量動載荷為
(3-21)
(3-22)
由公式
計算軸承壽命。
10r/min
C=37500N
10/3
查表13-7,溫度系數(shù)=1
代入得Lhh=3.6×106,滿足使用要求
3.5 腰部內(nèi)部電纜安裝方式
機器人上安裝有電機等電氣元件。這些電氣元件,一般都隨著機器人的運動而運動。安裝在機器人腰部的內(nèi)部電纜,將各運動的電氣元件與機器人基座上的固定不動的插頭座連接起來。這樣,連接機器人與控制柜的外部電纜就不會隨著機器人的運動而擺動。安裝在機器人腰部的電纜結(jié)構(gòu),要保證各個電路從運動端到固定端的連接。
目前常用的腰部電纜安裝結(jié)構(gòu)有兩種:
1) 電纜由腰部回轉(zhuǎn)軸穿過。
當腰部左右回轉(zhuǎn)時,在軸中心穿過的電纜則擰成麻花型。由于機器人腰部一般左右回轉(zhuǎn)不超過±180o,所以通過軸中心的電纜扭轉(zhuǎn)角度最大不超過180o。這種電纜安裝結(jié)構(gòu)要求腰部的回轉(zhuǎn)軸有一定的長度,中心通孔的直徑要足夠大,電纜要柔軟而易彎曲,外皮要堅固耐磨。
2)將腰部電纜支撐多圈圓柱型彈簧式。
彈簧式電纜的上端與機器人內(nèi)部電纜相連,下部與機器人機座上下不動的外部電纜相連。當機器人腰部作回轉(zhuǎn)運動時,彈簧被扭轉(zhuǎn),最大扭矩角度不超過±180o。彈簧式是將電纜綁在彈簧骨架上制成的。彈簧式電纜要具有一定的彈性,直徑D要盡量小,圈數(shù)不能太少,以保證直徑變化量△D不會太大。在腰部結(jié)構(gòu)上腰保證彈簧直徑變化所需的活動空間[15]。
結(jié) 論
這次畢業(yè)設計的課題是對噴涂機器人人的一個簡單分析與研究,本人設計的是機身部分,在郭老師的指導和同組同學的幫助,經(jīng)過一個學期的努力,終于基本上完成了本次的畢業(yè)設計內(nèi)容。本次設計獲得了不少知識和成果,完成了以下內(nèi)容:
1. 在翻閱大量機械資料后,不僅對噴涂機器人有了一定的認識(噴涂機器人的發(fā)展歷史、意義、用途),而且也相應的了解了一些其他工業(yè)機器人的知識。此次設計還幫助我對本專業(yè)進行的復習與鞏固,學會了如何查找書籍來幫助自己。
2. 在同組同學進行討論和郭老師指導之后,確定了一個總體方案,采用了二級減數(shù)器,步進電機驅(qū)動,關節(jié)式坐標。
3. 對機身系統(tǒng)進行了數(shù)次方案論證,最終確定采用86BYG3501步進電機驅(qū)動、齒輪傳動的方案,并繪制了機身部件圖以相當數(shù)量的零件圖,對畫圖相關的知識有了進一步了解。
由于本人學識不足、水平有限,加之時間倉促,設計中還有很多不足之處,希望老師能夠提出批評并多提指導意見,以便本人在今后的學習中改進。
致 謝
在此,首先感謝我的指導老師郭剛老師。郭老師是一個治學嚴謹、學識淵博的人,為人嚴肅但又不失和藹可親,郭老師的敬業(yè)精神和寬厚的人品都讓我受益匪淺。在郭老師的悉心指導下,我對畢業(yè)設計的認識從一團糟到有了初步的認識到明確了任務目標,再到基本工作的組織和完成以及對工作任務的檢查和整理。通過這樣一個過程,使我更深一步地了解了噴涂機器人的基本結(jié)構(gòu)與用途。
其次感謝王璽、蔣明同學對我的幫助和指點。沒有他們的幫助和提供資料對于我一個對機器人一竅不通的人來說要想在短短的幾個月的時間里學習到機器人知識并完成畢業(yè)論文是幾乎不可能的事情。
?在論文即將完成之際,我的心情無法平靜,從開始進入課題到論文的順利完成,有多少可敬的師長、同學、朋友給了我無言的幫助,在這里請接受我誠摯的謝意!
最后再次感謝郭老師和我的同組同學以及其他所有幫助我的同學和老師!
參 考 文 獻
[1] 謝存禧,張鐵.機器人技術(shù)及其應用[M].北京:機械工業(yè)出版社,2005.
[2] 王薇,趙增強,趙之堅,葛昕.機器人在轎車保險杠自動噴涂線上的應用[J].制造業(yè)自動化,2006,28(6):77-78
[3] 龔振邦 等. 機器人機械設計[M]. 北京:電子工業(yè)出版社,1995.
[4] 韓宇輝,周汝雁,張馳,李照宇.基于嵌入式結(jié)構(gòu)的建筑涂裝機器人智能測控系統(tǒng)[J].河南科學,2004,22(4):235-237
[5] 石銀文. 快速發(fā)展的機器人自動噴漆技術(shù)[J],機器人技術(shù)與應用,2007(5):18-22.
[6] 熊有倫. 機器人技術(shù)基礎[M]. 武漢:華中理工大學出版社,1997.
[7] 李忠杰等. 步進電機應用技術(shù)[M]. 北京:機械工業(yè)出版社,1988.
[8] 蔣新松.未來機器人技術(shù)發(fā)展方向的探討[J] .機器人,1996(5):285-291.
[9] 萬遇良.機電一體化系統(tǒng)的設計與分析[M].北京:中國電力出版社,1998:119—155.
[10] 劉鴻文. 材料力學[M]. 北京:高等教育出版社. 1991.
[11] A Prototype Integrated Robotic Painting System: Software and Hardware Development 1993.
[11] 劉鴻文.材料力學[M]. 北京:高等教育出版社. 1991.
[12] 王之煦,許杏根.簡明機械設計手冊[S]. 北京:機械工業(yè)出版社. 1987.
[13] 李振清. 袖珍機械設計師手冊[S]. 北京:機械工業(yè)出版社,1994.
[14] 嚴學高,孟中大. 機
收藏