小型釘齒玉米脫粒機的設計-帶演講稿PPT【含9張CAD圖紙+PDF圖】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
軸流式玉米脫粒裝置運行因素
對損耗和能耗的影響
Waree Srison,Somchai,Chuan-Udom,Khwantri,Saengprachatanarak
孔敬大學工程學院農(nóng)業(yè)工程系,泰國孔敬 40002 孔敬大學東北重點作物應用工程研究所,泰國孔敬 40002
摘要
研究了影響軸流式玉米脫粒裝置損耗和能耗的的運行因素。脫殼裝置長 0.90 米,釘齒末端直徑 0.30 米。 這些因素包括三個級別的水分含量(MC),三
個層次的進料速率(FR),以及三級轉(zhuǎn)子速度(RS)。實驗基于響應面方法和 23 因 子設計進行。研究結果表明,MC 顯著影響顆粒破碎和功率消耗,但不影響脫殼 裝置的損耗。增加 MC 可提高晶粒破碎率和耗電量。FR 影響了電耗,但不影響脫 粒裝置的損耗和谷物的破碎。增加 FR 增加了能耗。RS 對脫粒單元損失、糧食破 碎和耗電量均無明顯影響,增加 RS 值增加了晶粒破碎率和耗電量,但降低了脫 粒單位損失。在多元線性模型的基礎上建立了經(jīng)驗模型。
關鍵詞 玉米脫粒裝置 ;水分含量;進給速率;轉(zhuǎn)子轉(zhuǎn)速
引言
玉米是對畜牧業(yè)來說很重要的飼料原料(Farjam 等人,2014)。玉米生產(chǎn)是 基于其多樣性,另外,收獲機制是玉米生產(chǎn)過程中最重要的組成部分之一(參考 文獻)((Chuan-Udom,2013 年)。
Kunjara 等人(1998 年)討論了泰國的玉米脫殼問題,從中獲得以下信息。玉 米脫粒機自從 1929 起就被使用和改良。玉米脫粒機的開發(fā)主要是由當?shù)氐闹圃?商來進行,大部分玉米脫粒機采用的是紋桿脫粒機和釘齒脫粒機。這些脫粒機已 經(jīng)過測試和評估,以確定其最佳操作性能,直到累計損失(谷物損失和顆粒破碎) 低于 1.5%。然而,用紋桿式脫粒機時發(fā)現(xiàn),殘留在凹形表面上的破碎作物部件 降低了谷物分離的有效性,而釘齒脫粒機的能耗和剝落滾筒速度是紋桿式脫粒機 的兩倍(Kunjara 等人,1998 年)。
玉米脫粒裝置最初是以小麥脫粒裝置為基礎研制而成的,但糧食破碎率較高
(農(nóng)業(yè)部,1996)。Chuan Udom(2013)對泰國脫粒機影響玉米脫殼損失的操作 因素進行了研究,發(fā)現(xiàn)軸流式脫粒機具有高效、易清洗、糧食破碎少等特點,對 調(diào)整脫粒玉米是經(jīng)濟的,并且只需要簡單的修改。此外,軸流脫殼裝置的原理適 用于泰國和亞洲國家的情況(Singhal 和 Thierstein,1987; Chuan-Udom,2011)。
Chuan-Udom 和 Chinsuwan(2009)對泰國軸流式水稻聯(lián)合收割機的運行和調(diào)
整進行的研究表明,轉(zhuǎn)子速度,導葉傾斜度,谷物含水率,進料速度和顆粒物質(zhì) 對脫粒裝置損失都有明顯的影響。Chinsuwan 等人(2003)研究了轉(zhuǎn)子切向速度 和進給速度對脫粒裝置損失和稻谷破損的影響。結果表明,當轉(zhuǎn)子切向速度增大 時,脫粒單元損失減小,損傷增大。安德魯斯等人(1993)研究了聯(lián)合收割機操 作參數(shù)對水稻收獲損失的影響,并介紹了喂入率、料谷比、顆粒含水量、旋翼轉(zhuǎn) 速、凹間隙等因素對脫粒裝置損失的影響。Gummert 等人(1992)報道了轉(zhuǎn)子轉(zhuǎn) 速、進給速度和百葉窗傾角對脫粒單元損失的影響,以及轉(zhuǎn)子轉(zhuǎn)速對顆粒損傷的 影響。
合適的玉米脫粒機需要研究影響損耗和能耗的重要因素,即轉(zhuǎn)子轉(zhuǎn)速,進料 速率和谷物含水率。因此,本研究的目的是研究軸流式玉米脫殼裝置的運行因素 對損失和能耗的影響。
材料與方法
玉米脫粒裝置
本研究利用泰國農(nóng)業(yè)研究開發(fā)機構(公共組織)提供的軸流玉米脫殼裝置進 行,如圖 1 所示,脫粒裝置長為 0.90 米,直徑端面距釘齒末端 0.3 米,具有可
控的轉(zhuǎn)子速度。功率測量裝置如圖 2 所示,軸流式玉米脫粒裝置由圓柱釘齒構成, 圓筒下面的凹板由彎曲鋼筋制成,導葉的傾角是可調(diào)的。脫粒裝置下的谷物溜槽 分為九個槽,進給速度可通過控制物料輸送帶速度進入脫粒裝置來調(diào)節(jié)。實驗是 在實驗室內(nèi)成規(guī)模進行的。本試驗采用先鋒 B-80 玉米品種進行。
影響因素和實驗設計
如表 1 所示,影響軸流式玉米脫殼裝置損失和功耗的操作因素范圍包括水分 含量(MC),進料速率(FR)和轉(zhuǎn)子速度(RS)。在進行了因素實驗設計之后,需 要大量因素和程度來確定材料和實驗單元的數(shù)量。 因此,應用 2 3 析因?qū)嶒炘O計, 如圖所示表 2,減少材料的使用和測試時間(伯杰和 Maurer,2002). 測試方法
每次測試使用 10 公斤玉米,通過輸送帶將玉米送入脫粒裝置的入口,從玉
米籽粒和玉米棒出口取樣,直到只剩下玉米顆粒,稱重并從原來的 10 千克玉米 中減去籽粒,結果被認為是脫粒單位損失(TL)。 為獲得顆粒破碎率,隨機從斜 槽中取出兩個 1 公斤的樣品,用手工分離破碎籽粒并記錄破碎籽粒的重量。在該 實驗中,使用具有應變計的扭矩傳感器(KFG-2-350-D2-11L1M3R; Sokki Kenyujo Co.Ltd。; Tokyo,Japan)。 扭矩計安裝在氣缸軸上以測量扭矩并計算功耗(P)。
數(shù)據(jù)分析
從所獲得的參數(shù)中,使用術語 TL,GB 和 P 構建多個線模型。 然后,模型是
表 1 自變量及其因子水平
變量
范圍和級別(編碼)
-
0
+
X1; 含水量(%濕基)
14
21
28
X2; 進給率(t / hr)
0.5
1.5
2.5
X3; 轉(zhuǎn)子轉(zhuǎn)速(m / s)
8
10
12
表 2 實驗裝置基于一個 2 3
因子設計,用于變量水分含量(X1),進料速率(X2)
和轉(zhuǎn)子速度(X3)的軸流式玉米脫粒裝置的損失和功耗。
實驗編號
X1
X2
X3
1
-
-
-
2
+
-
-
3
-
+
-
4
+
+
-
5
-
-
+
6
+
-
+
7
-
+
+
8
+
+
+
9
0
0
0
10
0
0
0
11
0
0
0
12
0
0
0
表 3 水分含量(MC),進料速率(FR)和轉(zhuǎn)子速度(RS)對脫粒單元損失, 籽粒破碎和功耗的影響。
實驗編號
MC(%
濕基)
FR(t/hr)
RS(m/s)
脫殼單位
損失(%)
谷物破損
率 (%)
功耗(W)
1
14(-)
0.5(-)
8(-)
2.32
0.61
1529.73
2
14(-)
0.5(-)
8(-)
2.93
0.37
1439.82
3
14(-)
0.5(-)
8(-)
3.24
0.18
1417.35
4
28(+)
0.5(-)
8(-)
2.43
2.26
1979.24
5
28(+)
0.5(-)
8(-)
2.89
2.22
2046.66
6
28(+)
0.5(-)
8(-)
3.33
2.47
2024.19
7
14(-)
2.5(+)
8(-)
2.60
0.18
2271.42
8
14(-)
2.5(+)
8(-)
2.88
0.19
2316.37
9
14(-)
2.5(+)
8(-)
3.06
0.25
2316.37
10
28(+)
2.5(+)
8(-)
2.90
2.20
3058.06
11
28(+)
2.5(+)
8(-)
2.89
2.13
2990.63
12
28(+)
2.5(+)
8(-)
2.65
2.68
3058.06
13
14(-)
0.5(-)
12(+)
1.60
0.94
2069.14
14
14(-)
0.5(-)
12(+)
1.57
0.71
2046.66
15
14(-)
0.5(-)
12(+)
1.52
1.30
2091.61
16
28(+)
0.5(-)
12(+)
1.11
2.20
2361.32
17
28(+)
0.5(-)
12(+)
1.90
2.36
2338.84
18
28(+)
0.5(-)
12(+)
1.60
2.47
2428.74
19
14(-)
2.5(+)
12(+)
1.54
0.49
2653.50
20
14(-)
2.5(+)
12(+)
1.53
1.06
2541.12
21
14(-)
2.5(+)
12(+)
1.57
0.79
2631.02
22
28(+)
2.5(+)
12(+)
1.58
2.22
3215.39
23
28(+)
2.5(+)
12(+)
1.54
2.68
3215.39
24
28(+)
2.5(+)
12(+)
1.47
2.20
3215.39
25
21(0)
1.5(0)
10(0)
2.36
1.06
2586.07
26
21(0)
1.5(0)
10(0)
2.22
1.26
2653.50
27
21(0)
1.5(0)
10(0)
2.03
1.52
2563.60
28
21(0)
1.5(0)
10(0)
2.56
1.61
2586.07
括號中的數(shù)字表示范圍和級別的代碼; -低,0 中等,+高。 應用響應面法和 2 3 析因設計分析參數(shù)對損耗和功耗的影響,使用設計專家
軟件確定每個參數(shù)對測定系數(shù)(R2)的影響(版本 7; Stat-Ease 公司;明尼蘇達 州明尼阿波利斯,明尼蘇達州,美國)。采用方差分析法對影響 TL 的設計因素進 行回歸分析,在 P<0.05 時進行籽粒破碎和功耗檢驗。
指標值
指標值 TL,GB 和 P 是根據(jù)評估玉米脫粒機的程序計算出來的(亞洲經(jīng)濟社 會委員會和太平洋農(nóng)業(yè)機械地區(qū)網(wǎng)絡 1995)。
結果與討論
MC,F(xiàn)R 和 RS 對 TL,GB 和 P 的影響如表 3 所示。
影響脫粒裝置損失的操作參數(shù)
影響脫殼裝置損失的操作參數(shù)的方差分析結果如表 4 所示。結果表明,RS 對脫殼單元損失有顯著影響,而 MC、FR、MCxFR、MCxRS、FRxRS 和 MCxFRxRS 對 脫殼單元損失的影響不顯著。
確定操作參數(shù)對脫殼裝置損失的影響的回歸方程如公式(1):
TL = 5.44 - 0.32RS (1) 其中 TL 是脫粒損失(百分比),RS(米每秒)是轉(zhuǎn)子轉(zhuǎn)速,方程(1)中 R2
和 R2 的調(diào)整值分別為 0.87 和 0.87。
基于公式 (1)中,表示 MC 和 RS 對 TL 的影響的響應曲線圖如圖 3。 從圖 3 中可以看出,增加轉(zhuǎn)子轉(zhuǎn)速(RS)減少了與 Simonyan(2009)的研
究有關的脫粒單位損失(TL),其增加跳動導致脫粒能力增加減少脫粒單位損失。
影響籽粒破碎的操作參數(shù)
表 5 顯示影響籽粒破碎的操作參數(shù)的方差分析結果。結果表明,MC、RS 和
MC X RS 對籽粒破損有顯著影響,而 FR,MC X FR,F(xiàn)R X RS 和 MC X FR X RS 對 籽粒破碎沒有統(tǒng)計學影響。用于確定操作參數(shù)對籽粒破碎的影響的回歸方程如方 程 (2):
GB =-3.40 + 0.22MC + 0.28RS - 9.85 X 10-3MC X RS (2) 其中 GB 是籽粒破碎率(百分比),MC 是含水量(百分比),Rs 是轉(zhuǎn)子速度(米
每秒),R2 和調(diào)整后的 R2 值分別為 0.96 和 0.94。
基于公式 (2),開發(fā)了響應面圖以顯示 MC 和 RS 的影響(圖 4)以及 MC 和 FR(圖 5)在 GB 上。
如圖 4 和圖 5 所示,增加 RS 傾向于增加 GB,這與 Rostami 等人的研究有關
(2009 年),在這種情況下,跳動加劇導致?lián)p失加劇。
MC 的增加導致 GB 的增加趨勢(Chuan-Udom,2013,Mahmoud 和 Buchele, 1975),因為谷物的高含水量更加靈活,使得谷物在被擊打時更容易破碎。
表 4 影響脫殼裝置損耗的變異操作參數(shù)分析
資源
平方和
DF
均方根
F 值
p 值 Prob> F
模型
10.15
7
1.45
18.77
<0.0001
模型是重要的
MC
1.93x10-0.005
1
1.93x10-0.005
2.49x10-0.004
0.9876
FR
1.82x10-0.003
1
1.82x10-0.003
0.024
0.8796
RS
9.57
1
9.57
123.93
<0.0001
MCxFR
1.95x10-0.003
1
1.95x10-0.003
0.025
0.8754
MCxRS
2.51x10-0.003
1
2.51x10-0.003
0.032
0.8589
FRxRS
3.77x10-0.004
1
3.77x10-0.004
4.89x10-0.003
0.9450
MCxFRxRS
3.13x10-0.003
1
3.13x10-0.003
0.040
0.8426
純粹的錯誤
1.47
19
0.077
相關總數(shù)
11.65
27
MC 為水分含量,F(xiàn)R 為進給速率,RS 為轉(zhuǎn)子轉(zhuǎn)速; DF 為自由度。
圖 3.當進料速率為 1.5 噸/小時,脫粒單位損失(TL)的響應曲線圖顯示了水分 含量(MC,以重量為基準測量百分比)和轉(zhuǎn)子速度(RS)的影響。
圖 4.當進料速率為 1.5 噸/小時,表明水分含量(MC,以重量基準測量百分比) 和轉(zhuǎn)子速度(RS)的影響的顆粒破碎的響應曲線圖(GB)。
圖 5.當轉(zhuǎn)子速度為 10 m / s 時,顯示進料速率(FR)和含水量(MC,以重量為 基準測量百分比)的影響的顆粒破碎響應曲線圖(GB)。 影響功耗的操作參數(shù)
表 6 示出了影響功率消耗的操作參數(shù)的方差分析結果。結果表明:MC、FR、RS、 MCxFR、MCxRS 和 FRxRS 對脫粒單元損失有顯著影響,而 MCxFRxRS 對脫粒單元損 失影響不顯著,方程(3)示出了確定操作參數(shù)對動力消耗的影響的回歸方程: P=-925.096+58.508MC+699.237FR+211.020RS
+11.416MCxFR-3.345MCxRS-39.956FRxRS (3) 其中 P 是功率消耗(瓦特),MC 是水分含量(百分比),F(xiàn)R 為進給速度(每
秒米)RS 為轉(zhuǎn)子速度(每秒米),R2 和調(diào)整后的 R2 值分別為 0.99 和 0.99?;?于公式(2),開發(fā)了響應面圖,顯示 MC 和 FR(圖 6),MC 和 RS(圖 7)和 FR 和 RS(圖 8)對功耗的影響。
從圖 4 和 5,增加 MC 增加 P,因為含水量較高的谷物較粘。隨著 FR 數(shù)量的 增加,傾向于增加 P,因為將更多材料裝入脫粒裝置導致打擊增加(Saeng-Ong 等人,2015)如圖 6 和 8。從圖 7 和 8,增加 RS 導致了增加功耗,因為增加了打 擊(Saeng-Ong 等人,2015)。
主要研究結論如下:1)轉(zhuǎn)子轉(zhuǎn)速(RS)顯著影響脫粒單位損失(TL),增加
RS 降低 TL;2)含水量(MC)和轉(zhuǎn)子轉(zhuǎn)速(RS)對籽粒破碎有顯著影響,增加
MC 和 RS 導致籽粒破碎的增加趨勢;3)含水率(MC)、進給率(FR)和轉(zhuǎn)速(RS) 對功率消耗(P)有顯著影響,MC、FR 和 RS 增加消耗;4)影響脫粒單元損失(TL) 的運行因素的最優(yōu)線性模型為 5.44318-0.32501RS,R2 值為 0.87;5)影響糧食 破碎的操作因素的優(yōu)化模型為-3.40+0.22MC+0.28RS-9.85x10-0.03MCxRS,R2 值 為 0.96;6)影響電力消耗的操作因素(P)的優(yōu)化模型為- 925.096 + 58.508MC
+ 699.237FR + 211.02RS + 11.416MCxFR - 3.345MCxRS - 39.956FRxRS, R2 值
為 0.99。
表 5 影響谷物破碎的操作參數(shù)的方差分析
資源
平方和
DF
均方根
F 值
p 值 Prob> F
模型
19.54
7
1.45
51.62
<0.0001
模型重要
MC
16.80
1
16.80
310.70
<0.0001
FR
0.045
1
0.045
0.83
0.3728
RS
0.56
1
0.56
9.86
0.0054
MCxFR
0.068
1
0.068
1.26
0.2752
MCxRS
0.44
1
0.44
8.05
0.0105
FRxRS
2.04x10-0.004
1
3.77x10-0.004
3.77x10-0.003 0.9516
MCxFRxRS
3.37x10-0.004
1
3.13x10-0.003
6.24x10-0.003 0.9379
純粹的錯誤
1.03
19
0.077
相關總數(shù)
20.61
27
MC 為含水量,F(xiàn)R 為進給速率,RS 為轉(zhuǎn)子速度(RS),DF 為自由度。
表 6
影響功耗的操作參數(shù)的方差分析
資源
平方和
DF
均方根
F 值
p 值 Prob> F
模型
6.59x100.006
7
9.42x100.005
580.58
<0.0001
模型重要
MC
1.53x100.006
1
1.53x100.006
944.00
<0.0001
FR
3.93x100.006
1
3.93x100.006
2422.03
<0.0001
RS
8.74x100.005
1
8.74x100.005
535.67
<0.0001
MCxFR
86,211.76
1
86,211.76
53.16
<0.0001
MCxRS
57,765.05
1
57,765.05
35.62
<0.0001
FRxRS
86,211.76
1
86,211.76
53.16
<0.0001
MCxFRxRS
1.54x100.005
1
5388.24
3.32
0.0841
純粹的錯誤
36,202.20
19
1621.79
相關總數(shù)
6.95x100.006
27
MC 為含水量,F(xiàn)R 為進給速率,RS 為轉(zhuǎn)子速度(RS),DF 為自由度。
圖 6.當轉(zhuǎn)子速度(RS)為 10 m / s 時,功率消耗(P)的響應曲線圖顯示進料速率(FR)和 含水量(MC,以重量為基準測量百分比)的影響。
圖 7.當進料速度為 1.5 t / hr 時,功率消耗(P)的響應曲線圖顯示了含水量(MC,以重量基 準測量百分比)和轉(zhuǎn)子速度(RS)的影響。
圖 8.功率消耗(P)的響應曲線圖,顯示當潮濕含量為 14%時進料速率(FR)和轉(zhuǎn)子速度(RS) 的影響。
致謝
作者感謝:泰國農(nóng)業(yè)研究開發(fā)機構(公共組織); 東北重要作物應用工程系,泰國孔敬
孔敬大學; 以及泰國曼谷高等教育委員會采后技術創(chuàng)新中心提供研究支持。
參考文獻
[1]Andrews, S.B., Siebenmorgen, T.J., Vories, E.D., Loewer, D.H., Mauromoustakos, A., 1993. Effects of combine operating parameters on harvest loss and quality in rice. Agric. Mech. Asia Afr. Lat. Am. 36, 1599-1607.
[2]Berger, P.D., Maurer, R.E., 2002. Experimental Design with Applications in Man- agement, Engineering, and the Sciences. Belmont, CA, USA.
[3]Chuan-Udom, S., 2011. Grain Harvesting Machines. Khon Kaen University, Khon Kaen, Thailand (in Thai).
[4]Chuan-Udom, S., 2013. Operating factors of Thai threshers affecting corn shelling losses. Songklanakarin J. Sci. Technol. 35, 63-67.
[5]Chuan-Udom, S., Chinsuwan, W., 2009. Effects of concave rod clearance and number of concave bars on threshing performance of a axial ?ow rice threshing unit for Chainat 1 variety. KKU Res. J. 14, 1037-1045 (in Thai).
[6]Chinsuwan, W., Pongjan, N., Chuan-udom, S., Phayom, W., 2003. Effects of threshing bar inclination and clearance between concave rod on performance of axial ?ow rice thresher. Thai Soc. Agric. Eng. J. 10, 15-20 (in Thai). [7]Department of Agriculture, 1996. Agricultural Machines 50th Year Celebrations: 1996. Department of Agriculture, Bangkok, Thailand (in Thai).
[8]Economic and Social Commission for Asia and the Paci?c Regional Network for Agricultural Machinery, 1995. Test Code and Procedure for Power Grain Thresher: RNAM. Test Code & Procedures for Farm Machinery. Bangkok, Thailand, second ed. [9]Farjam, A., Omid, M., Akram, A., Fazel Niari, Z., 2014. A neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields. J. Agric. Sci. Technol. 16, 767-778.
[10]Gummert, M., Kutzbach, H.D., Muhlbauer, W., Wacker, P., Quick, G.R., 1992. Perfor- mance evaluation of an IRRI axial-?ow paddy thresher. Agric. Mech. Asia Afr. Lat. Am. 23, 47-58.
[11]Kunjara, B., Wijarn, C., Therdwongworakul, A., 1998. Testing and evaluation of locally-made maize sheller. J. Natl. Res. Counc. Thail. 20, 41-57.
[12]Mahmoud, A.R., Buchele, W.F., 1975. Distribution of shelled corn throughput and mechanical damage in a combine cylinder. Am. Soc. Agric. Eng. 1, 448-452. [13]Rostami, M.A., Azadshahraki, F., Naja?nezhad, H., 2009. Design, development and evaluation of a peanut sheller. Agric. Mech. Asia Afr. Lat. Am. 40, 47-49. [14]Saeng-Ong, P., Chuan-Udom, S., Saengprachatanarak, K., 2015. Effects of guide vane inclination in axial shelling unit on corn shelling performance. Kasetsart J. Nat. Sci. 49, 761-771.
[15]Singhal, O.P., Thierstein, G.E., 1987. Development of an axial-?ow thresher with multi-crop potential. Agric. Mech. Asia Afr. Lat. Am. 18, 55-65.
[16]Simonyan, K.J., 2009. Development of motorized stationary sorghum thresher. Agric. Mech. Asia Afr. Lat. Am. 40, 47-55
Original ArticleEffects of operating factors for an axial-flow corn shelling unit onlosses and power consumptionWaree Srison,a,bSomchai Chuan-Udom,a,b,*Khwantri Saengprachatanaraka,baDepartment of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, ThailandbApplied Engineering for Important Crops of the North East Research Group, Khon Kaen University, Khon Kaen 40002, Thailanda r t i c l e i n f oArticle history:Received 20 August 2015Accepted 2 May 2016Available online 26 December 2016Keywords:Corn shelling unitMoisture contentFeed rateRotor speeda b s t r a c tThe operating factors were studied for an axial-flow corn shelling unit that affected losses and powerconsumption. The shelling unit was 0.90 m long, with a diameter toward the end of the peg tooth of0.30 m. The factors comprised three levels of moisture content (MC), three levels of feed rate (FR), andthree levels of rotor speed (RS). The experiments were conducted based on response surface method-ology and 23factorial designs. The results of this study indicated that the MC significantly affected grainbreakage and power consumption, but did not affect shelling unit losses. Increasing the MC increasedboth the grain breakage and power consumption. The FR affected the power consumption but did notaffect shelling unit losses and grain breakage. Increasing the FR increased the power consumption. TheRS had a significant impact on the shelling unit losses, grain breakage and power consumption.Increasing the RS increased the grain breakage and power consumption, but decreased the shelling unitlosses. Empirical models were formulated based on multiple linear models.Production and hosting by Elsevier B.V. on behalf of Kasetsart University. This is an open access articleunder the CC BY-NC-ND license (http:/creativecommons.org/licenses/by-nc-nd/4.0/).IntroductionCorn is a feed raw material and is important for the livestockindustry (Farjam et al., 2014). Corn production is based on its va-rietyand, additionally,the harvesting mechanism is oneof themostimportant components in corn production processes (Reference)(Chuan-Udom, 2013).Kunjara et al. (1998) discussed corn shelling in Thailand fromwhich the following information is sourced. Corn shelling has beenused and modified since 1929. The development of corn shellerequipment was mostly conducted by local manufacturers, with themost corn shellers used for de-husking being the rasp bar shellerand peg-tooth sheller. These shellers have been tested and evalu-ated to determine their best operational performance until theaccumulative losses (grain losses and grain breakage) were lessthan 1.5%. Nevertheless, with a rasp bar sheller, it was found thatbroken crop components remaining on the concave surfacesreduced the effectiveness of grain separation, while the powerconsumption and shelling drum speed of the peg-teeth shellerwere double that of the rasp bar sheller (Kunjara et al., 1998).A shelling unit for corn husker shelling was originally developedbased on a wheat threshing unit, which was efficient but the grainbreakage was relatively high (Department of Agriculture, 1996).Chuan-Udom (2013) studied the operating factors of Thai threshersaffecting corn shelling losses and found that an axial flow ricethresher was highly efficient and easy to clean, with little grainbreakage, with the adjustment to shell corns being economical andrequiringonlyeasy modification. Moreover, the principle of an axialflow shelling unit is suitable for Thailand and conditions in Asiancountries (Singhal and Thierstein, 1987; Chuan-Udom, 2011).The study of the operations and adjustments of the Thai, axialflow, rice combine harvester by Chuan-Udom and Chinsuwan(2009) showed that the rotor speed, guide vane inclination, grainmoisture content, feed rate and grain material other than grain hadsignificant effects on the threshing unit losses. Chinsuwan et al.(2003) studied the effects of the rotor tangential speed and feedrate on threshing unit losses and rice grain damage. The data ob-tained showed that the threshing unit losses decreased and thedamage increased when the rotor tangential speed was increased.Andrews et al. (1993) studied the effects of combine operatingparameters on the harvest loss in rice and reported that the feedrate, the ratio of material other than grain to that of grain, grainmoisture content, rotor speed and concave clearance affectedthreshing unit losses. Gummert et al. (1992) reported that the rotor* Corresponding author. Department of Agricultural Engineering, Faculty ofEngineering, Khon Kaen University, Khon Kaen 40002, Thailand.E-mail address: (S. Chuan-Udom).Contents lists available at ScienceDirectAgriculture and Natural Resourcesjournal homepage: http:/ and hosting by Elsevier B.V. on behalf of Kasetsart University. This is an open access article under the CC BY-NC-ND license (http:/creativecommons.org/licenses/by-nc-nd/4.0/).Agriculture and Natural Resources 50 (2016) 421e425speed, feed rate and louver inclination affected threshing unitlosses and that the rotor speed affected grain damage.The appropriate axial flow sheller for shelling corn requires thestudy of important factors that affect losses and the power con-sumption, namely, the rotor speed, feed rate and grain moisturecontent Therefore, the aim of this research was to study the effectsof operating factors of an axial-flowcorn shelling unit on losses andthe power consumption.Materials and methodsCorn shelling unitThis study was conducted using an axial flow corn shelling unitprovided by the Agricultural Research Development Agency (PublicOrganization), Thailand as shown in Fig. 1. The shelling unit was0.90 m long, with a diameter toward the end of the peg tooth of0.30 m, with a controllable rotor speed. There was a powermeasuring device as shown in Fig. 2. The axial flow corn shellingunit consisted of a spike-toothed cylinder. The concave portionlocated under the cylinder was made of curved steel bar. The guidevane inclination was adjustable. The chute for grain under theshelling unit was divided into nine slots. The feed rate wasadjustable by controlling the conveyer belt speed of the materialsinto the shelling unit. The experiments were performed at thelaboratory scale.This study was performed with Pioneer B-80 corn variety.Factors studied and experimental designThe range of operating factors affecting losses and the powerconsumption of an axial flow corn shelling unit were the mois-ture content (MC), feed rate (FR) and rotor speed (RS), as shownin Table 1. Following a factorial experimental design, a largenumber of factors and degrees were required to determine thequantity of materials and the experimental unit. Thus, a 23factorial experimental design was applied, as shown in Table 2, toreduce the use of materials and the time for testing (Berger andMaurer, 2002).Testing methodEach test used 10 kg of corn. The corn was fed into the inlet ofthe shelling unit on a conveyor belt. The samples taken from thehusks and cobs outlet was screened until only corn grain remainedand the grain was weighed and subtracted from the original 10 kgof corn and the result was considered as the shelling unit loss (TL).To obtain the percentage of grain breakage (GB), two 1 kg sampleswererandomly taken fromthe chute, the GB wasseparated byhandand the weight of the GB was recorded. In this experiment, a torquetransducer with a strain gauge (KFG-2-350-D2-11L1M3R; SokkiKenyujo Co. Ltd.; Tokyo, Japan) was used. The torque meter wasinstalled on the cylinder shaft to measure the torque and tocalculate the power consumption (P).Data analysisFrom the obtained parameters, the terms TL, GB and P wereused to construct multiple line models. Then, the models wereFig. 1. Corn shelling unit.Fig. 2. Power measuring device.Table 1Independent variables and their factor levels.VariableRange and Levels (coded)e0X1; Moisture content (% wet basis)142128X2; Feed rate (t/hr)0.51.52.5X3; Rotor speed (m/s)81012Table 2Experimental units based on a 23factorial design for losses and po-wer consumption of an axial flow corn shelling unit for the variablesmoisture content (X1), feed rate (X2) and rotor speed (X3).Experiment numberX1X2X31eee2ee3ee4e5ee6e7e89000100001100012000W. Srison et al. / Agriculture and Natural Resources 50 (2016) 421e425422applied in the analysis of the effects of parameters on losses andthe power consumption based on response surface methodologyand 23factorial designs, determining the effects of each param-eter on the coefficient of determination (R2) using the DesignExpert software package (version 7; Stat-Ease Inc; Minneapolis,MN, USA.). ANOVA was used for regression analysis of thedesign factors affecting TL, GB and P. Significance was tested atp FModel10.1571.4518.770.0001Model is significantMC1.93 ? 10?0.00511.93 ? 10?0.0052.49 ? 10?0.0040.9876FR1.82 ? 10?0.00311.82 ? 10?0.0030.0240.8796RS9.5719.57123.93 FModel19.5471.4551.620.0001Model is significantMC16.80116.80310.70FModel6.59 ? 100.00679.42 ? 100.005580.580.0001Model is significantMC1.53 ? 100.00611.53 ? 100.006944.000.0001FR3.93 ? 100.00613.93 ? 100.0062422.030.0001RS8.74 ? 100.00518.74 ? 100.005535.670.0001MC*FR86,211.76186,211.7653.160.0001MC*RS57,765.05157,765.0535.620.0001FR*RS86,211.76186,211.7653.160.0001MC*FR*RS1.54 ? 100.00515388.243.320.0841Pure error36,202.20191621.79Correlation total6.95 ? 100.00627MC moisture content, FR feed rate, RS rotor speed (RS); DF degrees of freedom.Fig. 6. Response surface plot of power consumption (P) showing the effect of feed rate(FR) and moisture content (MC, measured on a weight basis, %wb), when rotor speed(RS) was 10 m/s.Fig. 7. Response surface plot of power consumption (P) showing the effect of moisturecontent (MC, measured on a weight basis, %wb) and rotor speed (RS), when feed ratewas 1.5 t/hr.Fig. 8. Response surface plot of power consumption (P) showing the effect of feed rate(FR) and rotor speed (RS), when moisture content was 14% on a wet basis.W. Srison et al. / Agriculture and Natural Resources 50 (2016) 421e425425
收藏