《三角形內(nèi)角和定理》教學設(shè)計方案.doc
《《三角形內(nèi)角和定理》教學設(shè)計方案.doc》由會員分享,可在線閱讀,更多相關(guān)《《三角形內(nèi)角和定理》教學設(shè)計方案.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
《三角形內(nèi)角和定理》教學設(shè)計方案 平鄉(xiāng)縣實驗中學 龐西宏 一、 教材與學生現(xiàn)實的分析 1、三角形的內(nèi)角和定理是從“數(shù)量關(guān)系”來揭示三角形內(nèi)角之間的關(guān)系的,這個定理是任意三角形的一個重要性質(zhì),它是學習以后知識的基礎(chǔ),并且是計算角的度數(shù)的方法之一。在解決四邊形和多邊形的內(nèi)角和時都將轉(zhuǎn)化為三角形的內(nèi)角和來解決。其中輔助線的作法、把新知識轉(zhuǎn)化為舊知識、用代數(shù)方法解決幾何問題,為以后的學習打下良好的基礎(chǔ),三角形內(nèi)角和定理在理論和實踐中有廣泛的應用。 2、三角形內(nèi)角和定理的內(nèi)容,學生在小學已經(jīng)熟悉,但在小學是通過實驗得出的,要向?qū)W生說明證明的必要性,同時說明今后在幾何里,常常用這種方法得到新知識,而定理的證明需要添輔助線,讓學生明白添輔助線是解決數(shù)學問題(尤其是幾何問題)的重要思想方法,它同代數(shù)中設(shè)末知數(shù)是同一思想。 3、學生在小學里已知三角形的內(nèi)角和是180,前面又學習了三角形的有關(guān)概念,平角定義和平行線的性質(zhì),而且也滲透了三角形的內(nèi)角和是180的證明,它的證明借助了平角定義,平行線的性質(zhì)。用輔助線將三角形的三個內(nèi)角巧妙地轉(zhuǎn)化為一個平角或兩平行線間的同旁內(nèi)角,為定理的證明提供了必備條件。盡管前面學生接觸過推理論證的知識,但并末真正去論證過,特別是在論證的格式上,沒有經(jīng)過很好的鍛煉。因此定理的證明應是本節(jié)引導和探索的重點。輔助線的作法是學生在幾何證明過程中第一次接觸,只要教師設(shè)置恰當?shù)膯栴}情境,學生再由實驗操作、觀察、抽象出幾何圖形,用自主探索的方式是可以完成的,并且這樣的過程 可以更好地發(fā)展他們的創(chuàng)造能力和實驗能力。 從本節(jié)開始訓練學生將命題翻譯為幾何符號語言,寫出已知、求證,學會分析命題的證明思路,對培養(yǎng)學生的思維能力和推理能力將起到重要的作用。 二、教學設(shè)計思想、媒體設(shè)計思路及課堂教學結(jié)構(gòu)流程 教學目標 教學知識點 三角形內(nèi)角和定理的證明。 能力訓練要求 掌握三角形內(nèi)角和定理,并初步學會利用輔助線證明,同時培養(yǎng)學生觀察、猜想、和論證能力。 情感與價值觀要求 通過運用多媒體技術(shù),來激發(fā)學生的求知欲。 教學重點 三角形內(nèi)角和定理的證明思路及應用。 教學難點 三角形內(nèi)角和定理的證明方法。 教學方法 多媒體動畫演示,實驗法,討論法。 教學流程 設(shè)計說明 創(chuàng)設(shè)問題情境 播放ppt引入本節(jié)課題,我們以前曾經(jīng)測量出一個三角形的三個內(nèi)角度數(shù)得到三角形的內(nèi)角和是180。下面大家先自己畫出一個三角形,然后剪掉三個角拼在一起,看看組成什么角呢? 下面老師演示動畫拼圖直觀得出結(jié)論 教師指出:這只是實驗得出的命題,不能當做定理,只有經(jīng)過嚴格的幾何證明,證明命題的正確性,才能作為幾何定理,今后,在幾何里,常采用這種方法得到新知識。 那么如何證明此命題是真命題呢?能否從剛才拼圖過程作出輔助線(平行線),利用平行線的性質(zhì)來證明呢? 從學過的知識引入符合學生的認知規(guī)律,且小學已知三角形三個內(nèi)角和是180。 學生自主探究 學生回憶證明一個命題的步驟: ①畫圖 ②分析命題的題設(shè)和結(jié)論,寫出已知求證,把文字語言轉(zhuǎn)化為幾何語言。 ③分析、探究證明方法。 學生分組討論探究,有本章前面幾節(jié)作為基礎(chǔ),學生有能力畫圖,寫已知,求證。 創(chuàng)設(shè)問題情境 教師引導:要證三角形三個內(nèi)角和是180,觀察圖形,三個角間沒什么關(guān)系,能不能象前面那樣,把這三個角拼在一起呢?拼成什么樣的角呢? 學生思考與180有關(guān)的角后回答,可拼成:①平角,②兩平行線間的同旁內(nèi)角。教師引導,要把三角形三個內(nèi)角轉(zhuǎn)化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫成虛線,添輔助線是解決問題的重要思想方法。如何把三個角轉(zhuǎn)化為平角或兩平行線間的同旁內(nèi)角呢?下面同學們利用準備好的三角形紙片拼一拼,畫一畫。 聯(lián)想前面拼角的方法,學生能想到作出適當?shù)妮o助線。 讓學生體會轉(zhuǎn)化的數(shù)學思想方法。 A B C D E 學生自主探究 學生通過自主探究,可以得出以下幾種輔助線的作法: ① 如圖1,過A作DE∥AB ② 如圖2,延長BC,過C作CE∥AB 圖2 圖1 A B C D E 1 學生通過觀察分析、歸納,使思維達到高潮,由感受性認識上升到理性認識。 請不同畫法的學生板演,并口述畫圖方法,敘述不恰當時,同學可改正, 辨析與研討 通過以上分析、研究,讓不同做法的學生講解依據(jù)。 1.根據(jù)平行線的性質(zhì),利用內(nèi)錯角,把三角形三內(nèi)角轉(zhuǎn)化為一個平角。 2.根據(jù)平行線的性質(zhì),利用內(nèi)錯角和同位角,把三角形三內(nèi)角轉(zhuǎn)化為一個平角。 進一步搞清作輔助線的思路和合乎邏輯的分析方法,充分讓學生表述自己的觀點,這個過程對培養(yǎng)學生的能力極為重要,依據(jù)不充分,學生可爭論。 學生自主探究 根據(jù)以上幾種輔助線的作法,選擇一種,師生合作,寫出示范性證明過程。其余由學生自主完成證明過程。 目的是培養(yǎng)學生的思維能力和推理能力。 反思與評價 1、 弄清證明命題的必要性及步驟。 2、 如何將文字語言轉(zhuǎn)化為幾何語言。 3、 三角形內(nèi)角和定理的證明是借助于什么獲得(實驗、觀察、添加輔平行線),平行線是以后幾何中常作的輔助線。 4、 添輔助線的技巧:通過平行線把三角形三個內(nèi)角轉(zhuǎn)化為平角或兩平行線間的同旁內(nèi)角,即把新知識轉(zhuǎn)化為舊知識去解決。 引導學生進行總結(jié)和概括,培養(yǎng)學生的歸納概括能力。 u 例1如圖,在△ABC中,∠BAC=400,∠B=750, AD是三角形ABC的角平分線,求∠ADB的度數(shù)。 ◆例2 如圖,C島在A島的北偏東50方向,B島在A島的北偏東80方向,C島在B島的北偏西40方向。從C島看A、B兩島的視角∠ACB是多少度? 例題講解 使學生靈活應用三角形內(nèi)角和定理。 1.如圖,從A處觀測C處的仰角∠CAD=300,從B處 觀測C處的仰角∠CBD=450,從C處觀測A,B兩處 的視角∠ACB是多少度? 思維拓展 練習 通過拓展訓練進一步使學生靈活應用三角形內(nèi)角和定理。 2.如圖,一種滑翔傘的形狀是左右對稱的四邊形ABCD,其中∠A=1500,∠B=∠D=400,求∠C的度數(shù). 小結(jié) 讓學生自我反思和總結(jié):本節(jié)課學到了什么知識. 1.我們證明了一個很有用的三角形內(nèi)角和定理,證明思想是,運用輔助線將原三角形中處于不同位置的三個內(nèi)角集中在一起,拼成一個平角。輔助線是聯(lián)系命題的條件和結(jié)論的橋梁,今后我們還要學習它。 2.學會運用三角形內(nèi)角和定理已知兩個內(nèi)角求第三個內(nèi)角 在反思和總結(jié)中鍛煉學生的抽象思維 能力,提高學生解題能力.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 三角形內(nèi)角和定理 三角形 內(nèi)角 定理 教學 設(shè)計方案
鏈接地址:http://m.szxfmmzy.com/p-6725833.html