【溫馨提示】====【1】設(shè)計(jì)包含CAD圖紙 和 DOC文檔,均可以在線預(yù)覽,所見(jiàn)即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無(wú)任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預(yù)覽的簡(jiǎn)潔性,店家將三維文件夾進(jìn)行了打包。三維預(yù)覽圖,均為店主電腦打開(kāi)軟件進(jìn)行截圖的,保證能夠打開(kāi),下載后解壓即可。======【3】特價(jià)促銷(xiāo),,拼團(tuán)購(gòu)買(mǎi),,均有不同程度的打折優(yōu)惠,,詳情可咨詢(xún)QQ:1304139763 或者 414951605======【4】 題目最后的備注【YC系列】為店主整理分類(lèi)的代號(hào),與課題內(nèi)容無(wú)關(guān),請(qǐng)忽視
六自由度搬運(yùn)機(jī)械手結(jié)構(gòu)設(shè)計(jì)
目 錄
目 錄 - 1 -
摘 要 - 3 -
Abstract - 4 -
第一章 緒論 - 5 -
1.1 工業(yè)機(jī)械手的概述 - 5 -
1.2 本論文研究的主要內(nèi)容 - 5 -
第二章 機(jī)械手方案的創(chuàng)成和機(jī)械設(shè)計(jì) - 6 -
2.1 機(jī)械手機(jī)械設(shè)計(jì)的特點(diǎn) - 6 -
2.2 與機(jī)械手有關(guān)的概念 - 6 -
2.3 設(shè)計(jì)方案 - 7 -
2.3.1 方案要求 - 7 -
2.3.2 方案功能設(shè)計(jì)與分析 - 7 -
2.5 后軸和大臂板剛度和強(qiáng)度分析 - 10 -
2.5.1 后軸和大臂板有限元模型的建立與解析 - 11 -
2.5.2 計(jì)算結(jié)果分析 - 12 -
2.6 機(jī)械手旋轉(zhuǎn)電機(jī)的選取 - 13 -
第三章 運(yùn)動(dòng)學(xué)分析 - 16 -
3.1 概述 - 16 -
3.2 運(yùn)動(dòng)學(xué)正解 - 18 -
3.3 運(yùn)動(dòng)學(xué)逆解 - 20 -
3.4 雅可比矩陣的推算和速度分析 - 23 -
第四章 工作空間分析 - 26 -
4.1 工作空間分析簡(jiǎn)述 - 26 -
4.1.1 工作空間的概念 - 26 -
4.1.2 工作空間的形成 - 26 -
4.1.3 工作空間中的空腔和空洞 - 27 -
4.2 理想工作空間的包絡(luò)方程 - 28 -
4.3 實(shí)際工作空間分析和作圖 - 32 -
第五章 機(jī)械手結(jié)構(gòu)設(shè)計(jì) - 34 -
5.1 手部設(shè)計(jì)基本要求 - 34 -
5.1.1 傳動(dòng)機(jī)構(gòu) - 34 -
5.1.2 回轉(zhuǎn)型傳動(dòng)機(jī)構(gòu) - 34 -
5.1.3 平移型傳動(dòng)機(jī)構(gòu) - 35 -
5.1.4 機(jī)械手手抓的設(shè)計(jì)計(jì)算 - 35 -
5.2 腕部設(shè)計(jì)的基本要求 - 37 -
5.2.2 腕部的結(jié)構(gòu)以及選擇 - 38 -
5.2.3 腕部設(shè)計(jì)考慮的參數(shù) - 38 -
5.3 機(jī)身回轉(zhuǎn)結(jié)構(gòu)的選擇 - 40 -
5.4 機(jī)械手最終設(shè)計(jì)三維圖 - 40 -
第六章 系統(tǒng)控制部分 - 41 -
6.1 應(yīng)用背景與要求 - 41 -
6.2 組成部分 - 41 -
6.2.1 關(guān)節(jié)的限位控制 - 41 -
6.2.2 工件坐標(biāo)系的測(cè)量與計(jì)算 - 41 -
6.2.3 機(jī)械手的張合控制 - 42 -
6.2.4 公式之間的轉(zhuǎn)換 - 42 -
6.2.5 計(jì)算結(jié)果的存儲(chǔ) - 42 -
6.3 機(jī)械手系統(tǒng)的工藝流程 - 42 -
6.4 機(jī)械手控制系統(tǒng)功能設(shè)計(jì)分析 - 44 -
6.4.1 PLC的資源分配 - 44 -
6.4.2機(jī)械手系統(tǒng)的控制程序 - 45 -
第七章 結(jié)論 - 47 -
7.1 本論文取得的結(jié)果 - 47 -
7.2 設(shè)計(jì)中存在的問(wèn)題 - 47 -
7.3 對(duì)本設(shè)計(jì)改進(jìn)的方法 - 47 -
致 謝 - 48 -
參考文獻(xiàn) - 49 -
附錄一 PLC I/O口分配圖 - 51 -
附錄二 示例程序 - 52 -
摘 要
隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,機(jī)械手技術(shù)越來(lái)越受到廣泛關(guān)注,在工業(yè)生產(chǎn)日益現(xiàn)代化的今天,機(jī)械手的使用變得越來(lái)越普及。因此,對(duì)于機(jī)械手技術(shù)的研究也變得越來(lái)越迫切,尤其是工業(yè)機(jī)械手方面。本論文作者針對(duì)這一領(lǐng)域,設(shè)計(jì)了一款擁有6個(gè)自由度的機(jī)械手。首先,作者針對(duì)該機(jī)械手的設(shè)計(jì)要求,對(duì)結(jié)構(gòu)設(shè)計(jì)選擇了一個(gè)最優(yōu)方案,同時(shí)進(jìn)行了運(yùn)動(dòng)學(xué)分析,用D-H法建立坐標(biāo)變換矩陣,推算了運(yùn)動(dòng)方程的正逆解,用矢量積法推導(dǎo)了速度雅克比矩陣;其次進(jìn)行工作空間分析;然后進(jìn)行動(dòng)力學(xué)分析,對(duì)關(guān)鍵零件進(jìn)行校核。
機(jī)械手是工業(yè)生產(chǎn)的必然產(chǎn)物,它是一種模仿人體上肢的部分功能,按照預(yù)定要求輸送工件或握持工具進(jìn)行操作的自動(dòng)化技術(shù)設(shè)備,對(duì)實(shí)現(xiàn)工業(yè)生產(chǎn)自動(dòng)化,推動(dòng)工業(yè)生產(chǎn)的進(jìn)一步發(fā)展起著重要作用,因而具有強(qiáng)大的生命力受到人們的廣泛重視和歡迎。本課題對(duì)搬運(yùn)機(jī)械手進(jìn)行了總體方案研究,確定了機(jī)械手的坐標(biāo)形式和自由度,確定了機(jī)械手的技術(shù)參數(shù)。
關(guān)鍵詞:機(jī)械手,運(yùn)動(dòng)學(xué)分析,工作空間分析,動(dòng)力學(xué)分析
Abstract
With the development of modern science and technology, robotics, more and more attention in an increasingly modernized industrial production, the use of robots becoming more and more popular. Therefore, robotics has become increasingly urgent, especially industrial robots. For this area, the authors designed a robot with 6 degrees of freedom. First of all, of the requirements for the design of the robot, structural design options for an optimal solution, while for the kinematic analysis, coordinates with the DH method to establish the transformation matrix is calculated by inverse solution of equations of motion, derived by vector product method Jacobian matrix of speed; followed by spatial analysis work; and dynamic analysis, the key parts of the check.
Industrial manipulator is the inevitable product of industrial production, it is a part of the upper extremity function to imitate the human body, in accordance with the scheduled transfer jobs or holding tools required to operate the automation equipment, automation of industrial production, and promote the further development of industrial production playsimportant role, which has a strong vitality by the widespread attention and welcome.The subject of the overall transportation plan manipulator studied to determine the coordinates of the manipulator forms and degrees of freedom to determine the technical parameters of the manipulator.
Key Words: manipulator,; kinematic analysis; work space analysis; dynamic analysis
第一章 緒論
1.1 工業(yè)機(jī)械手的概述
在工業(yè)領(lǐng)域廣泛應(yīng)用著工業(yè)機(jī)械手。工業(yè)機(jī)械手一般是指在工業(yè)生產(chǎn)過(guò)程中為實(shí)現(xiàn)自動(dòng)化生產(chǎn)的需要,用于搬運(yùn)材料、工具、零件等或進(jìn)行裝配、加工等各種工作任務(wù)的特種裝置。
工業(yè)機(jī)械手的定義有很多,綜合而言有以下幾個(gè)重要特征:
(1) 是一種類(lèi)似人的手臂的機(jī)械裝置,用于搬運(yùn)材料、零件、工具等或進(jìn)行裝配、加工等各種工作任務(wù)。
(2) 是可以再編程的,用戶可根據(jù)工作環(huán)境編制各種程序流程,完成不同的作業(yè)任務(wù)。
(3) 是一種自動(dòng)控制裝置,在無(wú)人參與的情況下自動(dòng)按程序工作。
(4) 具有通用性,除專(zhuān)用的工業(yè)機(jī)械手外,一般工業(yè)機(jī)械手在執(zhí)行不同的作業(yè)任務(wù)時(shí)有較好的通用性,如更換其手部末端操作器(手爪、工具等)便可執(zhí)行不同的作業(yè)任務(wù)。
一個(gè)典型的工業(yè)機(jī)械手是由機(jī)械本體、關(guān)節(jié)步進(jìn)驅(qū)動(dòng)系統(tǒng)、計(jì)算機(jī)控制系統(tǒng)、傳感系統(tǒng)和通訊接口等組成,一般多關(guān)節(jié)型串聯(lián)機(jī)械手具有4~6個(gè)自由度,其中2~3個(gè)自由度決定了末端執(zhí)行器在空間的位置,其余2~3個(gè)自由度決定了末端執(zhí)行器在空間的姿態(tài)。
1.2 本論文研究的主要內(nèi)容
本人系統(tǒng)學(xué)習(xí)了機(jī)械手技術(shù)的知識(shí),查閱了一些相關(guān)的文獻(xiàn)資料,在此基礎(chǔ)上,結(jié)合本人的設(shè)想和設(shè)計(jì)工作中需要解決的任務(wù),主要進(jìn)行了以下幾項(xiàng)工作:
(1) 進(jìn)行機(jī)械手本體結(jié)構(gòu)的方案創(chuàng)成、分析和設(shè)計(jì)。
(2) 進(jìn)行機(jī)械手運(yùn)動(dòng)學(xué)分析,推算運(yùn)動(dòng)方程的正、逆解。
(3) 分析機(jī)械手操作臂的工作空間,根據(jù)分析結(jié)果對(duì)操作臂各個(gè)桿件的長(zhǎng)度進(jìn)行選擇和確定。
(4) 對(duì)機(jī)械手操作臂進(jìn)行力學(xué)分析,對(duì)操作臂進(jìn)行強(qiáng)度校核
第二章 機(jī)械手方案的創(chuàng)成和機(jī)械設(shè)計(jì)
2.1 機(jī)械手機(jī)械設(shè)計(jì)的特點(diǎn)
串聯(lián)機(jī)械手機(jī)械設(shè)計(jì)與一般的機(jī)械設(shè)計(jì)相比,有很多不同之處。首先,從機(jī)構(gòu)學(xué)角度看,機(jī)械手的結(jié)構(gòu)是由一系列連桿通過(guò)旋轉(zhuǎn)關(guān)節(jié)(或移動(dòng)關(guān)節(jié))連接起來(lái)的開(kāi)式運(yùn)動(dòng)鏈。開(kāi)鏈結(jié)構(gòu)使得機(jī)械手的運(yùn)動(dòng)分析和靜力分析復(fù)雜,兩相鄰桿件坐標(biāo)系之間的位姿關(guān)系、末端執(zhí)行器的位姿與各關(guān)節(jié)變量之間的關(guān)系、末端執(zhí)行器的受力和各關(guān)節(jié)驅(qū)動(dòng)力矩(或力)之間的關(guān)系等,都不是一般機(jī)構(gòu)分析方法能解決得了的。需要建立一套針對(duì)空間開(kāi)鏈機(jī)構(gòu)的運(yùn)動(dòng)學(xué)、靜力學(xué)方法。末端執(zhí)行器的位置、速度、加速度和各個(gè)關(guān)節(jié)驅(qū)動(dòng)力矩之間的關(guān)系是動(dòng)力學(xué)分析的主要內(nèi)容,在手臂開(kāi)鏈結(jié)構(gòu)中,每個(gè)關(guān)節(jié)的運(yùn)動(dòng)受到其它關(guān)節(jié)運(yùn)動(dòng)的影響,作用在每個(gè)關(guān)節(jié)上的重力負(fù)載和慣性負(fù)載隨手臂位姿變化而變化。因此,機(jī)械手是一個(gè)多輸入多輸出的、非線性、強(qiáng)耦合、位置時(shí)變的動(dòng)力學(xué)系統(tǒng),動(dòng)力學(xué)分析十分復(fù)雜,所以,即使通過(guò)一定的簡(jiǎn)化,也需要使用不同于一般機(jī)構(gòu)分析的專(zhuān)門(mén)分析方法。
其次,由于開(kāi)鏈機(jī)構(gòu)相當(dāng)于一系列懸臂桿件串聯(lián)在一起,機(jī)械誤差和彈性再變形的累積使機(jī)械手的剛度和精度大受影響。因此在進(jìn)行機(jī)械手機(jī)械設(shè)計(jì)時(shí)特別注意剛度和精度設(shè)計(jì)。
再次,機(jī)械手是典型的機(jī)電一體化產(chǎn)品,在進(jìn)行結(jié)構(gòu)設(shè)計(jì)時(shí)必須考慮到驅(qū)動(dòng)、控制等方面的問(wèn)題,這和一般的機(jī)械產(chǎn)品設(shè)計(jì)是不同的。
另外,與一般機(jī)械產(chǎn)品相比,機(jī)械手在機(jī)械設(shè)計(jì)在結(jié)構(gòu)的緊湊性、靈巧性方面有更高的要求。
2.2 與機(jī)械手有關(guān)的概念
自由度:工業(yè)機(jī)械手一般都為多關(guān)節(jié)的空間機(jī)構(gòu),其運(yùn)動(dòng)副通常有移動(dòng)副和轉(zhuǎn)動(dòng)副兩種。相應(yīng)的,以轉(zhuǎn)動(dòng)副相連的關(guān)節(jié)稱(chēng)為轉(zhuǎn)動(dòng)關(guān)節(jié),以移動(dòng)副相連的關(guān)節(jié)稱(chēng)為移動(dòng)關(guān)節(jié)。在這些關(guān)節(jié)中,單獨(dú)驅(qū)動(dòng)的關(guān)節(jié)稱(chēng)為主動(dòng)關(guān)節(jié)。主動(dòng)關(guān)節(jié)的數(shù)目稱(chēng)為機(jī)械手的自由度。
2.3 設(shè)計(jì)方案
2.3.1 方案要求
工業(yè)機(jī)械手大都用于簡(jiǎn)單、重復(fù)、繁重的工作,如上、下料搬運(yùn)以及工作環(huán)境惡劣的場(chǎng)所,本機(jī)械手為搬運(yùn)機(jī)械手。要求動(dòng)作靈活,自由度為6個(gè),結(jié)構(gòu)緊湊,用于搬運(yùn)物料。采用電機(jī)驅(qū)動(dòng),設(shè)計(jì)其負(fù)重為100公斤。
2.3.2 方案功能設(shè)計(jì)與分析
1.機(jī)械手自由度的分配和手臂手腕的構(gòu)形
手臂是執(zhí)行機(jī)構(gòu)中的主要運(yùn)動(dòng)部件,它用來(lái)支承腕關(guān)節(jié)和末端執(zhí)行器,并使它們能在空間運(yùn)動(dòng)。為了使手部能達(dá)到工作空間的任意位置,手臂一般至少有三個(gè)自由度。
本題要求機(jī)械手手臂能達(dá)到工作空間的任意位置,而目標(biāo)物形狀大小和姿態(tài)則比較單一,同時(shí)要求機(jī)械手結(jié)構(gòu)簡(jiǎn)單,容易控制。綜合考慮后確定該機(jī)械手具有六個(gè)自由度,其中手臂三個(gè)自由度。由于在同樣的體積條件下,關(guān)節(jié)型機(jī)械手比非關(guān)節(jié)型機(jī)械手有更大的工作空間,同時(shí)關(guān)節(jié)型機(jī)械手的動(dòng)作和軌跡更靈活,因此決定采用關(guān)節(jié)型機(jī)械手。
圖2.1 該型機(jī)械手構(gòu)形
旋轉(zhuǎn)關(guān)節(jié)相對(duì)平移關(guān)節(jié)來(lái)說(shuō),操作空間大,結(jié)構(gòu)緊湊,重量輕,關(guān)節(jié)易于密封防塵。這里使用了六個(gè)旋轉(zhuǎn)關(guān)節(jié),綜合各種手臂和手腕構(gòu)形,最后確定其結(jié)構(gòu)形式如圖。
前三個(gè)關(guān)節(jié)決定了末端執(zhí)行器在空間的位置,后三個(gè)關(guān)節(jié)決定了末端執(zhí)行器在空間的姿態(tài)。
2.傳動(dòng)系統(tǒng)的布置
總體結(jié)構(gòu)方案確定后,作出機(jī)械手結(jié)構(gòu)草圖。在傳動(dòng)系統(tǒng)的布置方面采用種以下這種方案,如圖所示。根據(jù)該方案進(jìn)行機(jī)械結(jié)構(gòu)設(shè)計(jì)
圖2.2 傳動(dòng)系統(tǒng)方案原理圖
3.方案描述
該機(jī)械手由機(jī)座、大臂、小臂、手腕、末端執(zhí)行器和驅(qū)動(dòng)裝置組成。共有六個(gè)自由度,依次為夾緊、旋轉(zhuǎn)、俯仰(1)、左右搖擺、俯仰(2)、基座的回轉(zhuǎn)。
基座的回轉(zhuǎn)自由度可以進(jìn)行360度的回轉(zhuǎn);與基座相連的俯仰機(jī)構(gòu)(包含液壓缸)可進(jìn)行俯仰動(dòng)作,幅度較大,可以滿足60-120度的俯仰要求,與此相連部分為左右搖擺機(jī)構(gòu),能夠完成-60~60度的左右來(lái)回?cái)[動(dòng),接著下去的是俯仰機(jī)構(gòu),與搖擺機(jī)構(gòu)內(nèi)部類(lèi)似,亦可完成-60~60度的上下俯仰動(dòng)作,最后的是旋轉(zhuǎn)部分與手指部分,旋轉(zhuǎn)部分可以正反旋轉(zhuǎn),手指部分通過(guò)在手腕上滑槽來(lái)控制收放動(dòng)作。機(jī)構(gòu)采用液壓控制各自由度的動(dòng)作,簡(jiǎn)單方便且功率大,各自由度之間相互聯(lián)系且獨(dú)立,動(dòng)作時(shí)互不干涉。
機(jī)械手采用電機(jī)驅(qū)動(dòng),這種方式結(jié)構(gòu)簡(jiǎn)單、易于控制、使用維修方便、不污染環(huán)境等優(yōu)點(diǎn),這也是現(xiàn)代機(jī)械手應(yīng)用最多的驅(qū)動(dòng)方式。
機(jī)械手的電源為:220V,50Hz的交流電。由于該機(jī)械手功率較小,電動(dòng)機(jī)可以選擇步進(jìn)電機(jī)。步進(jìn)電機(jī)驅(qū)動(dòng)具有成本低,控制系統(tǒng)簡(jiǎn)單的優(yōu)點(diǎn)。故確定這種機(jī)械手的五個(gè)關(guān)節(jié)都采用步進(jìn)電動(dòng)機(jī)驅(qū)動(dòng),開(kāi)環(huán)控制,整機(jī)的旋轉(zhuǎn)采用步進(jìn)電機(jī)。
由于一些關(guān)節(jié)驅(qū)動(dòng)力矩較大,因此統(tǒng)一采用帶減速器的步進(jìn)電機(jī),而大臂和小臂俯仰運(yùn)動(dòng)的力矩較大,其出現(xiàn)的最大值分別為11Nm和5Nm,還要再進(jìn)行減速傳動(dòng)。步進(jìn)電機(jī)的輸出扭矩為0.5Nm,配置的減速器的減速比為1:9,大臂和小臂為1:4的齒輪減速驅(qū)動(dòng)。機(jī)械手結(jié)構(gòu)中全部采用球軸承。
在電機(jī)的布置上,可以將六個(gè)關(guān)節(jié)電機(jī)均置于回轉(zhuǎn)底座上,可以最大限度地減小扭矩,重心很穩(wěn)定,便于安裝和控制。
參考PUMA 560機(jī)械手的運(yùn)動(dòng)參數(shù),結(jié)合工作情況的需要,定出該型機(jī)械手的運(yùn)動(dòng)參數(shù)如下:
關(guān)節(jié)1(T): 30o/s ( 0.524 rad/s ) ( 5 r/min )
關(guān)節(jié)2(W): 15o/s ( 0.262 rad/s ) ( 2.5 r/min )
關(guān)節(jié)3(U): 15o/s ( 0.262 rad/s ) ( 2.5 r/min )
關(guān)節(jié)4(B): 30o/s ( 0.524 rad/s ) (5 r/min )
關(guān)節(jié)5(S): 60o/s ( 1.047 rad/s ) ( 10 r/min )
各關(guān)節(jié)轉(zhuǎn)動(dòng)范圍:
關(guān)節(jié)1(T): 0o~ +360o
關(guān)節(jié)2(W): 0o~ +90o
關(guān)節(jié)3(U): -120o~ +120o
關(guān)節(jié)4(B): -180o~ 0o
關(guān)節(jié)5(S): -180o~ +180o
2.4 方案結(jié)構(gòu)設(shè)計(jì)與分析
各部件組成和功能描述如下:
(1) 底座部件:
底座部件包括底座、回轉(zhuǎn)部件、傳動(dòng)部件等。底座支持整個(gè)操作機(jī),步進(jìn)電機(jī)通過(guò)齒輪傳動(dòng)將運(yùn)動(dòng)傳遞到腰部回轉(zhuǎn)軸,同時(shí)起減速作用。
(2) 腰部回轉(zhuǎn)部件:
腰部回轉(zhuǎn)部件包括腰部支架、回轉(zhuǎn)軸、電機(jī)座、各傳動(dòng)部件、步進(jìn)電機(jī)等。作用是支承大臂部件,完成腰部回轉(zhuǎn)運(yùn)動(dòng)。五臺(tái)步進(jìn)電機(jī)均固定在腰部支架上。
(3) 大臂部件:包括大臂、張緊部件、各傳動(dòng)部件等。
(4) 小臂部件:包括小臂、張緊部件、各傳動(dòng)部件等。
(5) 手腕部件:包括傳動(dòng)齒輪、機(jī)械連接部件等。
(6) 末端執(zhí)行器:由于抓取的物體是圓柱形,尺寸相差不大,末端執(zhí)行器的開(kāi)合范圍為20~40cm。手爪采用電機(jī)驅(qū)動(dòng),機(jī)構(gòu)采用絲杠驅(qū)動(dòng)平行四連桿機(jī)構(gòu),如下圖2.3所示。
圖2.3 末端執(zhí)行器
2.5 后軸和大臂板剛度和強(qiáng)度分析
后軸是整個(gè)機(jī)械手本體中一個(gè)很重要的零件,是用來(lái)驅(qū)動(dòng)大臂轉(zhuǎn)動(dòng)的零件。它的剛度直接影響整個(gè)機(jī)械手的精度。由于大臂和后軸結(jié)構(gòu)復(fù)雜,為了快速準(zhǔn)確地校核后軸的剛度和強(qiáng)度,同時(shí)根據(jù)設(shè)計(jì)要求本人采用有限元單元法進(jìn)行分析。
有限元法是隨著計(jì)算機(jī)的發(fā)展崦迅速發(fā)展起來(lái)的一種現(xiàn)代計(jì)算機(jī)方法,對(duì)于完成復(fù)雜結(jié)構(gòu)的力學(xué)分析十分有效。其基本思想是將一個(gè)連續(xù)的求解區(qū)域劃分為適當(dāng)形狀的許多微小單元,并在各個(gè)小單元分片構(gòu)造插值函數(shù),然后根據(jù)極值原理將問(wèn)題的控制微分方程化為控制所有單元的有限元方程,把總體的極值作為各個(gè)單元極值之和,即將局部單元總體合成,形成包含指定邊界條件的代數(shù)方程組。其解此方程組即得到各個(gè)節(jié)點(diǎn)上待求的函數(shù)值。
2.5.1 后軸和大臂板有限元模型的建立與解析
首先建立后軸的三維模型,由于Solid works軟件本身就是三維設(shè)計(jì)軟件,這一點(diǎn)很容易實(shí)現(xiàn)。接著定義后軸和大臂板的材質(zhì),建立約束條件,施加重力和集中栽荷,然后劃分網(wǎng)格,形成它們的有限元模型。進(jìn)行完前置處理后,便可利用Cosmos works軟件進(jìn)行解析計(jì)算了。
在Solid works建立模型,定義后軸材料(45鋼),密度為7.8g/cm3,彈性模量E=210GPa,泊松比為0.28,屈服強(qiáng)度為220MPa,施加重力和作用力,然后劃分單元,如圖2.4;
圖2.4 對(duì)后軸模型劃分單元
定義大臂板材料(硬鋁),密度為2.7g/cm3,彈性模量E=69GPa,泊松比為0.33,屈服強(qiáng)度為27.5MPa,施加重力和作用力,然后劃分單元,如圖2.5;
圖2.5 對(duì)大臂板模型劃分單元
2.5.2 計(jì)算結(jié)果分析
通過(guò)分析,可以清楚地看出后軸和大臂板的變形分布情況,如下圖所示。在后軸中,最大變形發(fā)生在中間附近,最大變形為0.087mm,滿足剛度的要求;在大臂板中,最大變形發(fā)生在最上端,最大變形為0.046mm,滿足剛度的要求。
圖2.6 后軸的變形規(guī)律
圖2.7 大臂板的變形規(guī)律
后軸的應(yīng)力分布如下圖所示,可以看出,應(yīng)力的總體分布規(guī)律是從中間到兩端逐漸增大,兩端軸承支承邊緣應(yīng)力最大,為187MPa,小于普通碳鋼的屈服強(qiáng)度,因此,結(jié)構(gòu)參數(shù)滿足強(qiáng)度要求。
圖2.8 后軸的應(yīng)力分布
大臂板的應(yīng)力分布如圖所示,可以看出,應(yīng)力的總體分布規(guī)律是從寬度方向上從中間到兩側(cè)面逐漸增大,兩側(cè)邊緣處應(yīng)力最大,為11MPa,小于硬鋁的屈服強(qiáng)度,因此,結(jié)構(gòu)參數(shù)滿足強(qiáng)度要求。
2.6 機(jī)械手旋轉(zhuǎn)電機(jī)的選取
工業(yè)機(jī)械手的旋轉(zhuǎn)采用了電機(jī)驅(qū)動(dòng),下面就給出各種驅(qū)動(dòng)方式的比較,以作為選取步進(jìn)電機(jī)作為驅(qū)動(dòng)方式的依據(jù)。
表2-1 各種驅(qū)動(dòng)方式比較
比較內(nèi) 容
驅(qū)動(dòng)方式
機(jī)械驅(qū)動(dòng)
電機(jī)驅(qū)動(dòng)
氣壓傳動(dòng)
液壓傳動(dòng)
異步電機(jī)
直流電機(jī)
步進(jìn)電機(jī)
步進(jìn)電機(jī)
輸出力矩
輸出力矩較大
輸出力可較大
輸出力可較小
氣體壓力小,輸出力矩小,如需輸出力矩較大, 結(jié)構(gòu)尺寸過(guò)大
液體壓力高,可以獲得較大的輸出力
控制性能
速度可高,速度和加速度均由機(jī)構(gòu)控制,定位精度高,可與主機(jī)嚴(yán)格同步
控制性能較差,慣性大,步易精確定位
控制性能好, 可精確定位, 但控制系統(tǒng)復(fù)雜
可高速,氣體壓縮性大,阻力效果差,沖擊較嚴(yán)重,精確定位較困難,低速步易控制
油液壓縮性小,壓力流量均容易控制,可無(wú)級(jí)調(diào)速, 反應(yīng)靈敏,可實(shí)現(xiàn)連續(xù)軌跡控制
應(yīng)用范圍
適用于自由度少的專(zhuān)用機(jī)械手, 高速低速均能適用
適用于抓取重量大和速度低的專(zhuān)用機(jī)械手
可用于程序復(fù)雜和運(yùn)動(dòng)軌跡要求嚴(yán)格的小型通用機(jī)械手
中小型專(zhuān)用通用機(jī)械手都有
中小型專(zhuān)用通用機(jī)械手都有,特別時(shí)重型機(jī)械手多用
由上表可知步進(jìn)電機(jī)應(yīng)用于驅(qū)動(dòng)工業(yè)機(jī)械手有著許多無(wú)可替代的優(yōu)點(diǎn),如控制性能好,可精確定位,體積較小可用于程序復(fù)雜和運(yùn)動(dòng)軌跡要求嚴(yán)格的小型通用機(jī)械手等,下面就對(duì)步進(jìn)電機(jī)的型號(hào)進(jìn)行選取。
a 、 初選電機(jī)為EML型步進(jìn)電機(jī),型號(hào)為:40APA。它的有關(guān)技術(shù)參數(shù)如下表:
表3-2 技術(shù)參數(shù)
電機(jī)型號(hào)
額定輸出功率
轉(zhuǎn)子轉(zhuǎn)動(dòng)慣量
額定轉(zhuǎn)矩
瞬間最大轉(zhuǎn)矩
額定電流
瞬間最大電流
額定轉(zhuǎn)速
最高轉(zhuǎn)速
40APA
4KW
102*10-4Kg.m2
38.2N.m
114.6N.m
24A
72A
1000r/min
1500r/min
b 、電機(jī)功率的確定
電機(jī)所需工作功率式為
因此
c 、電機(jī)轉(zhuǎn)速的確定
腰部的工作轉(zhuǎn)速為 2.5r/min
腰部采用單級(jí)諧波傳動(dòng)齒輪,傳動(dòng)比,可達(dá) i=70~500。故電機(jī)的轉(zhuǎn)速可選范圍為
=( 70~500 ) 2.5
= 175~1250
因此,初選電機(jī)符合要求。
第三章 運(yùn)動(dòng)學(xué)分析
3.1 概述
多自由度機(jī)械手是具有多個(gè)關(guān)節(jié)的空間機(jī)構(gòu),為了描述末端執(zhí)行器在空間的位置和姿態(tài),可以在每個(gè)關(guān)節(jié)上建立一個(gè)坐標(biāo)系,利用坐標(biāo)系之間的關(guān)系來(lái)描述末端執(zhí)行器的位姿。
常用的有D-H法(四參數(shù)法)和五參數(shù)法及矩陣變換法等。D-H法是1955年由Denavit和Hartenberg提出的一種建立相對(duì)位姿的矩陣方法。它用齊次變換描述各個(gè)連桿相對(duì)于固定參考系的空間幾何關(guān)系,用一個(gè)4×4的齊次變換矩陣描述相臨兩連桿的空間關(guān)系,從而推導(dǎo)出“末端執(zhí)行器坐標(biāo)系”相對(duì)于“基坐標(biāo)系”的等價(jià)齊次坐標(biāo)變換矩陣,建立操作臂的運(yùn)動(dòng)方程。本論文使用D-H法來(lái)建立坐標(biāo)系并推導(dǎo)該機(jī)械手的運(yùn)動(dòng)方程。
各桿件和關(guān)節(jié)的示意圖如圖 (a)。連拉桿1與2的關(guān)節(jié)為關(guān)節(jié)2,記做J2,O0,O1,O2的原點(diǎn)在關(guān)節(jié)2轉(zhuǎn)軸上,連接桿2與3的關(guān)節(jié)為關(guān)節(jié)3,記做J3,O3的原點(diǎn)在關(guān)節(jié)3轉(zhuǎn)軸上,依次類(lèi)推。
最終建立機(jī)械手坐標(biāo)系如圖 (b)。
其中表明坐標(biāo)間關(guān)系的四個(gè)參數(shù)為:
1.a(chǎn) i:從z i到z i+1沿x i測(cè)得的距離;
2.α i:從z i到z i+1繞x i測(cè)得的角度;
3.d i:從x i-1到x i沿z i測(cè)得的距離;
4.θ i:從x i-1到x i繞z i測(cè)得的角度。
各桿參數(shù)及關(guān)節(jié)變量如表3-1。
表3.1 各連桿參數(shù)及關(guān)節(jié)變量
關(guān)節(jié)i
ai-1
αi-1
di
θi
1
0
0
0
θ 1
2
0
+90°
0
θ 2
3
a2=254
0
0
θ 3
4
a3=186
0
0
θ 4
5
0
-90°
0
θ 5
6
0
-90
0
θ 6
x3
z3
x2
z2
x5
z5
x4
z4
xm
zm
x0
z0
z1
x1
O0O1O2
O4O5
O5
dm
a3
a2
O3
(b)
(a)
桿1
桿2
桿3
桿4
桿0
J1
J2
J3
J4
桿5
J5
Om
圖3.1 機(jī)械手坐標(biāo)系
3.2 運(yùn)動(dòng)學(xué)正解
在直角坐標(biāo)系中,可以用齊次矩陣表示繞x,y,z軸的轉(zhuǎn)動(dòng)和沿x,y,z軸的平移。
(3-1)
坐標(biāo)系{i}相對(duì)于{i-1}的變換可以看成是以下四個(gè)子變換的乘積:
(1)繞x i-1軸轉(zhuǎn)α i-1角;
(2)沿x i-1軸移動(dòng)a i-1;
(3)繞z i軸轉(zhuǎn)θ i角;
(4)沿z i軸移動(dòng)d i。
這些變換是相對(duì)于動(dòng)坐標(biāo)系描述的,將式(3-1)中的相關(guān)齊次矩陣按“從左到右”的原則相乘,得:
(3-2)
得到連桿變換矩陣:
(3-3)
將表3-1中各參數(shù)代入連桿變換矩陣(3-2),可得相鄰兩坐標(biāo)系的位姿變換矩陣,,,,。
(3-4)
式中:;;;
;;;
;;; (3-5)
;;
注:,,;
初始位置:;;;;
將的初始值代入式(3-5)得:
這與圖3.1所示的位姿一致,證明所做的推算是正確的。
要考察末端執(zhí)行器在空間上相對(duì)于基坐標(biāo)系的位姿,則應(yīng)建立末端執(zhí)行器的位姿變換矩陣。
高末端執(zhí)行變換器的坐標(biāo)系為{m},坐標(biāo)系{m}對(duì)基坐標(biāo)系{0}的位姿變換矩陣為:
(3-6)
式中,,,,,,,,,與式(3-4)中對(duì)應(yīng)項(xiàng)相同,,,為:
(3-7)
根據(jù)某時(shí)刻的時(shí)間t,機(jī)械手關(guān)節(jié)變量,便可求得末端執(zhí)行器在空間的位姿。這就是機(jī)械手運(yùn)動(dòng)學(xué)方程的正解。
3.3 運(yùn)動(dòng)學(xué)逆解
若已知末端執(zhí)行器的位姿,即式(3-6)中的,,…,,(已知三組參數(shù)中只要已知兩組即可,剩下一組參數(shù)是其余兩組的叉積),求出相應(yīng)的關(guān)節(jié)變量的過(guò)程稱(chēng)為運(yùn)動(dòng)學(xué)逆解。
從工程應(yīng)用的角度,運(yùn)動(dòng)學(xué)逆解往往更重要。它是機(jī)械手運(yùn)動(dòng)規(guī)劃和軌跡控制的依據(jù)。
得到封閉解有兩個(gè)充分條件:
1.有三個(gè)相鄰關(guān)節(jié)軸線交于一點(diǎn);
2.有三個(gè)相鄰關(guān)節(jié)軸線相互平行。
該型機(jī)械手的手臂和手腕三個(gè)相鄰關(guān)節(jié)平行,滿足條件2,因此能得到封閉形式解。
如上所述,該機(jī)械手運(yùn)動(dòng)方程可寫(xiě)為:
(3-8)
1.求解,
式(3-8)兩邊同乘
(3-9)
方程左邊:
(3-10)
方程右邊:
(3-11)
比較兩邊(2,4)項(xiàng)有:
解得:和 (3-12)
比較兩邊(2,1)項(xiàng)有:;
于是得:和 (3-13)
2.求解,,
比較兩邊(1,3)項(xiàng)有:
于是得:
(3-14)
式(3-8)兩邊同乘
(3-15)
方程左邊:
(3-16)
方程右邊:
(3-17)
比較兩邊(1,3)項(xiàng)有: (3-18)
變換得:
于是得: (3-19)
比較兩邊(1,4)項(xiàng)有:
將式(3-18)代入得:
和 (3-20)
將求得的,代入式(3-14)得
運(yùn)動(dòng)學(xué)方程的逆解不是唯一的。由于在求解的過(guò)程中出現(xiàn)“±”號(hào),因此可能得到2組解,這2組解分別代表了大臂和小臂的兩個(gè)不同位置。
3.4 雅可比矩陣的推算和速度分析
機(jī)械手的速度雅可比矩陣J是從關(guān)節(jié)空間向操作空間速度傳遞的廣義傳動(dòng)比。即: (3-21)
式中,是關(guān)節(jié)速度矢量,是操作速度矢量
當(dāng)已知時(shí),根據(jù)雅可比矩陣可推算出操作空間的速度矢量,反之,當(dāng)機(jī)械手末端執(zhí)行器的速度給定,可以根據(jù)逆雅可比矩陣算出各個(gè)關(guān)節(jié)的速度。
雅可比矩陣的行數(shù)等于機(jī)械手在操作空間運(yùn)動(dòng)的維數(shù),列數(shù)等于關(guān)節(jié)數(shù),因此,五自由度機(jī)械手的雅可比矩陣是一個(gè)6×5的方陣。
構(gòu)建雅可比矩陣的方法有矢量積法和微分變換法。這是用矢量積法推算該機(jī)械手的雅可比矩陣。
雅可比矩陣的第i列為
(3-22)
為計(jì)算簡(jiǎn)便起見(jiàn),將坐標(biāo)系{5}移到與{m}重合,根據(jù)前面推算的坐標(biāo)變換矩陣,得到:
中的元素,,…,的含義和數(shù)值與式(3-5)中相同。
從前面的坐標(biāo)變換矩陣得到,,…
將,,(i = 1,2,…,5)代入式(3-22)中得到雅可比矩陣的第i列:
(3-23)
得到雅可比矩陣J:
(3-24)
已知關(guān)節(jié)的速度(即式(3-21)中的),可以借助雅可比矩陣J求出各個(gè)關(guān)節(jié)點(diǎn)的速度。(即式(3-21)中的)。
第四章 工作空間分析
4.1 工作空間分析簡(jiǎn)述
工作空間是從幾何方面討論機(jī)械手的工作性能。分析工作空間是確定機(jī)械手手臂的構(gòu)形和參數(shù)必須的過(guò)程。本章分析了該型機(jī)械手操作臂的工作空間的特點(diǎn),以及用解析法結(jié)合作圖法確定末端執(zhí)行器的實(shí)際工作空間,根據(jù)工作空間選擇了各個(gè)桿件適合的長(zhǎng)度。
4.1.1 工作空間的概念
機(jī)械手的工作空間定義為:機(jī)械手操作臂正常運(yùn)行時(shí),手腕機(jī)械接口坐標(biāo)系的原點(diǎn)能在空間活動(dòng)的最大范圍。這一空間又稱(chēng)為可達(dá)空間,記做。
在總工作空間內(nèi),末端執(zhí)行器可以任意姿態(tài)達(dá)到的點(diǎn)構(gòu)成的工作空間稱(chēng)為靈活工作空間。記做。
可達(dá)空間去掉靈活工作空間所余下的部分稱(chēng)為次工作空間,記做。
實(shí)際的機(jī)械手操作臂都有一定的結(jié)構(gòu)限制,使得各個(gè)關(guān)節(jié)變量只能在某一范圍內(nèi)變化,即。這時(shí)實(shí)際工作空間和理想工作空間就不同了。為了加以區(qū)別,記實(shí)際操作空間、實(shí)際的靈巧工作空間、實(shí)際的次工作空間分別為,,。
4.1.2 工作空間的形成
如圖4-1,在末端執(zhí)行器上有參考點(diǎn),固接坐標(biāo)系,與一起繞的z軸旋轉(zhuǎn),在中形成一個(gè)圓,記該工作空間為。桿5帶著繞的Z軸旋轉(zhuǎn),可以形成環(huán)面,記該工作空間為。桿4又帶著繼在前一級(jí)坐標(biāo)系中旋轉(zhuǎn),得到旋轉(zhuǎn)曲面…,最終得到的參考點(diǎn)在在基坐標(biāo)系中所形成的旋轉(zhuǎn)面就是工作空間。遞推公式為:
(4-1)
X1
圖4.1 機(jī)械手的關(guān)節(jié)轉(zhuǎn)動(dòng)示意圖
Z1
X2
Z2
Z3
Z4
Z5
X3
X4
X5
Xm
Zm
Pm
4.1.3 工作空間中的空腔和空洞
空洞:在轉(zhuǎn)軸的周?chē)?,沿的全長(zhǎng),參考點(diǎn)均不能達(dá)到的空間,如圖4-2。
空腔:參考點(diǎn)不能達(dá)到的被完全封閉在工作空間之內(nèi)的空間,如圖4-2。
圖4.2 工作空間中的空腔和空洞
空洞形成的條件:
工作空間與其后級(jí)旋轉(zhuǎn)軸若不相交,則在旋轉(zhuǎn)軸周?chē)纬煽斩础?
判別:根據(jù)前級(jí)工作空間和后級(jí)旋轉(zhuǎn)軸之間最小距離判斷:
:不存在空洞
:存在空洞
示意圖見(jiàn)圖4-3:
圖4.3 空洞形成的條件
4.2 理想工作空間的包絡(luò)方程
確定工作空間的方法很多,常用的方法有解析法和圖解法。圖解法結(jié)果直觀,但工作量大;解析法可以得到工作空間的界限曲面方程,便于進(jìn)行工作空間的理論分析。解析法中的分組解法求解多自由度機(jī)械手的工作空間比較簡(jiǎn)單。
該方法是將該機(jī)械手6個(gè)關(guān)節(jié)分成兩組,第一組包括手腕上三個(gè)關(guān)節(jié)(關(guān)節(jié)4、5、6)。將作為參考點(diǎn),如圖4.4。分析固連在桿5上的點(diǎn)在坐標(biāo)系{4}中的形成的界限曲面。
圖4.4 手腕關(guān)節(jié)坐標(biāo)示意圖
P5
dp5
ap5
X4X5
P5
P5
P5
Z5
Z4
第二組包括腰部回轉(zhuǎn)、大臂俯仰、小臂俯仰三個(gè)關(guān)節(jié)(關(guān)節(jié)1、2、3),考察固連在坐標(biāo)系{3}上的點(diǎn)在機(jī)座坐標(biāo)系中形成的界限曲面。令手腕關(guān)節(jié)工作空間的界限曲面沿移動(dòng),得到完整的工作空間的界限曲面。
這里設(shè)的考察點(diǎn)與前面解運(yùn)動(dòng)學(xué)方程時(shí)不同。設(shè)與手爪坐標(biāo)系{m}的坐標(biāo)原點(diǎn)重合,則在{5}中的坐標(biāo)為{0, 0, dm, 1},dm≠0。利用式(4-1)和坐標(biāo)變換方程,進(jìn)行工作空間的分析。
(4-2)
在坐標(biāo)系{4}中形成的曲面記為
繞坐標(biāo)系{4}的軸中形成的工作空間曲面記為:
實(shí)際上是一平面曲線族:
(4-3)
可知為圓心在,半徑為的圓。
可以看出在坐標(biāo)系{4}中的工作空間為一圓,半徑為。因?yàn)椋怨ぷ骺臻g與理想工作空間不同,方程為:
(4-4)
工作空間為圓弧,如圖4.5:
dm
圖4.5 手腕工作空間示意圖
第二組包括關(guān)節(jié)1,2,3。考察固連在坐標(biāo)系{3}上的點(diǎn)(與坐標(biāo)系{4}的原點(diǎn)重合)在機(jī)座坐標(biāo)系中形成的界限曲面。各桿件和關(guān)節(jié)位置如圖3.1。
在{3}中的坐標(biāo)為{ a3, 0, 0, 1},得:
繞形成,表示在坐標(biāo)系{2}中得:
即: (4-5)
可知是圓心在,半徑為的圓。
繞軸旋轉(zhuǎn),形成曲線族{}:
即: (4-6)
為一平面曲線族。
由包絡(luò)條件:
解得:;
代入曲線方程得:
(4-7)
可知為圓心在,半徑分別為,的圓環(huán)。
繞旋轉(zhuǎn)得到的曲面記做。
即:
或記做: (4-8)
可以看出是兩個(gè)同心球面,球心在坐標(biāo)系{0}原點(diǎn),半徑分別為,。
令,求得的軸剖線:
(4-9)
令在{4}中形成的曲線的軸剖線沿移動(dòng),形成的包絡(luò)線就是所求工作空間的的軸剖線。方程為:
(4-10)
4.3 實(shí)際工作空間分析和作圖
有了工作空間包絡(luò)面的方程,對(duì)于機(jī)械手的工作空間有了定性的了解,可以用來(lái)判斷大體的工作范圍是否滿足作業(yè)需要,如不滿足,應(yīng)改變各個(gè)桿的長(zhǎng)度和位置。由于,的運(yùn)動(dòng)范圍為,,因此實(shí)際工作空間不是完整的球環(huán)。為了直觀地分析實(shí)際工作空間,這里作出了實(shí)際工作空間的剖面圖。
前面推算出的:
令,得到實(shí)際的工作空間為半徑的扇形。
再分析繞旋轉(zhuǎn)形成的。將,和,代入式(4-6),可以得到兩個(gè)極限位置。
即: (4-11)
利用式(4-11)可以求出腕關(guān)節(jié)在空間的位置。
令,,,得:
這時(shí)大臂和小臂處于水平位置,指向x軸正向。同樣的方法可以得到同一點(diǎn)的其他位置,這樣可以與圖解法互相驗(yàn)證和參考。
令在{4}中形成的曲線的中心(圓心)沿移動(dòng),形成的包絡(luò)線就是所求工作空間的的軸剖線。畫(huà)出軸剖面,取不同長(zhǎng)度的桿件得到不同的實(shí)際工作空間的軸剖面圖,最后確定各個(gè)桿件長(zhǎng)度為(單位:mm):
a2 = 254,a3 = 186,d m = 946。
實(shí)際工作空間如圖4.6中陰影區(qū)域。
圖4.6 手腕工作空間示意圖
從圖4.6中可以看出,實(shí)際工作空間能夠滿足作業(yè)的要求,因國(guó)軸剖面中沒(méi)有空洞,所以繞關(guān)節(jié)1旋轉(zhuǎn)后形成的實(shí)際工作空間沒(méi)有空腔,但在靠近腰部存在不能達(dá)到的區(qū)域,即存在空洞。
第五章 機(jī)械手結(jié)構(gòu)設(shè)計(jì)
5.1 手部設(shè)計(jì)基本要求
(1)應(yīng)具有足夠的握力(即夾緊力)
在確定手指的握力時(shí),除考慮工件重量外,還應(yīng)考慮在傳送或操作過(guò)程中所產(chǎn)生的慣性力和振動(dòng),以保證工件不致產(chǎn)生松動(dòng)或脫落。
(2)手指間應(yīng)有一定的開(kāi)閉角
兩個(gè)手指張開(kāi)與閉合的兩個(gè)極限位置所夾的角度稱(chēng)為手指的開(kāi)閉角。手指的開(kāi)閉角保證工件能順利進(jìn)入或脫開(kāi)。若夾持不同直徑的工件,應(yīng)按最大直徑的工件考慮。
(3)應(yīng)保證工件的準(zhǔn)確定位
為使手指和被夾持工件保持準(zhǔn)確的相對(duì)位置,必須根據(jù)被抓取工件的形狀,選擇相應(yīng)的手指形狀。例如圓柱形工件采用帶‘V’形面的手指,以便自動(dòng)定心。
(4)應(yīng)具有足夠的強(qiáng)度和剛度
手指除受到被夾持工件的反作用力外,還受到機(jī)械手在運(yùn)動(dòng)過(guò)程中所產(chǎn)生的慣性力和振動(dòng)的影響,要求具有足夠的強(qiáng)度和剛度以防止折斷或彎曲變形,但應(yīng)盡量使結(jié)構(gòu)簡(jiǎn)單緊湊,自重輕。
(5)應(yīng)考慮被抓取對(duì)象的要求
應(yīng)根據(jù)抓取工件的形狀、抓取部位和抓取數(shù)量的不同,來(lái)設(shè)計(jì)和確定手指的形狀。
5.1.1 傳動(dòng)機(jī)構(gòu)
傳動(dòng)機(jī)構(gòu)是向手指?jìng)鬟f運(yùn)動(dòng)和動(dòng)力,以實(shí)現(xiàn)夾緊和松開(kāi)動(dòng)作的機(jī)構(gòu)。該機(jī)構(gòu)根據(jù)手指開(kāi)合的動(dòng)作特點(diǎn)分為回轉(zhuǎn)型和平移型。回轉(zhuǎn)型又分為一支點(diǎn)回轉(zhuǎn)和多支點(diǎn)回轉(zhuǎn)。根據(jù)手爪夾緊是擺動(dòng)還是平動(dòng),可分為擺動(dòng)回轉(zhuǎn)型和平動(dòng)回轉(zhuǎn)型。
5.1.2 回轉(zhuǎn)型傳動(dòng)機(jī)構(gòu)
夾鉗式手部中較多的是回轉(zhuǎn)型手部,其手指就是一對(duì)杠桿,一般再同斜楔、滑槽、連桿、齒輪、渦輪蝸桿或螺桿等機(jī)構(gòu)組成復(fù)合式杠桿傳動(dòng)機(jī)構(gòu),用以改變傳動(dòng)比和運(yùn)動(dòng)方向等。
5.1.3 平移型傳動(dòng)機(jī)構(gòu)
平移型夾鉗式手部是通過(guò)通過(guò)手指的指面作直線往復(fù)運(yùn)動(dòng)或平面移動(dòng)來(lái)實(shí)現(xiàn)張開(kāi)或閉合動(dòng)作的,常用于夾持具有平行平面的工件(如冰箱等)。其結(jié)構(gòu)較復(fù)雜,不如回轉(zhuǎn)型手部應(yīng)用廣泛。
5.1.4 機(jī)械手手抓的設(shè)計(jì)計(jì)算
圖5-1 手部結(jié)構(gòu)
在杠桿作用下,銷(xiāo)軸向上的拉力,并通過(guò)銷(xiāo)軸中心點(diǎn),兩手指的對(duì)銷(xiāo)軸的反作用力為F1,F(xiàn)2
由 (3-1)
(3-2)
、為反作用力 =
由 (3-3)
(3-4)
當(dāng)手抓沒(méi)有張開(kāi)的時(shí)候,如圖3-2(a)所示,根據(jù)結(jié)構(gòu)設(shè)計(jì),它的最小夾持半徑R1=4mm,當(dāng)張開(kāi)60°時(shí),如圖3-2(b)所示:
5-2(a)
5-2(b)
圖5-2 手抓夾持示意圖
手指加在工件上的夾緊力,是設(shè)計(jì)手部的主要依據(jù)。必須對(duì)大小、方向和作用點(diǎn)進(jìn)行分析計(jì)算。一般來(lái)說(shuō),需要克服工件重力所產(chǎn)生的靜載荷以及工件運(yùn)動(dòng)狀態(tài)變化的慣性力產(chǎn)生的載荷,以便工件保持可靠的夾緊狀態(tài)。
(1)手指對(duì)工件的夾緊力可按公式計(jì)算: [6] (3-6)
式中K1 ——安全系數(shù),根據(jù)對(duì)機(jī)械手的工藝及設(shè)計(jì)要求確定。
K2——工作情況系數(shù),主要考慮慣性力的影響,
可近似按下式估算 ,
—工件垂直方向移動(dòng)速度,
t—機(jī)械手達(dá)到最高速度的響應(yīng)時(shí)間。
K3——方位系數(shù),根據(jù)手指與工件位置不同進(jìn)行選擇。
根據(jù)手指是水平防止夾垂直放置的工件,查得K3=0.5/f,
粗略估計(jì)K3=5。
G——被抓取工件所受的重力。
(2)計(jì)算:設(shè)a=10mm,b=20mm,=30°,機(jī)械手垂直方向的移動(dòng)速度為0.1mm/s,
其抓取重物所受重力G=1000N
設(shè),
驅(qū)動(dòng)力公式:
(3)實(shí)際所采取的液壓缸驅(qū)動(dòng)力要大于,考慮手抓的機(jī)械手效率。
取=0.85
夾緊缸拉力計(jì)算公式為:
(3-10)
式中D——活塞直徑
D——活塞桿直徑
P——驅(qū)動(dòng)壓力
選取活塞桿直徑d=0.5D,壓力油工作壓力p=0.8Mpa,
(3-11)
則活塞桿直徑為:20mm
缸筒壁厚的計(jì)算
計(jì)算公式: (3-12)
式中D——缸筒內(nèi)徑;
Py——試驗(yàn)壓力,當(dāng)缸的額定壓力時(shí),取 ,
——缸筒材料的許用應(yīng)力,,為材料抗拉強(qiáng)度,n為安全系數(shù)
一般取n=5,夾緊缸缸筒材料選用HT200材料,
,
因此選擇壁厚為3mm。
5.2 腕部設(shè)計(jì)的基本要求
(1) 結(jié)構(gòu)緊湊、重量輕
腕部處于手臂的最前端,它連同手部的靜、動(dòng)載荷均由臂部承擔(dān)。顯然,腕部的結(jié)構(gòu)、重量和動(dòng)力載荷,直接影響著臂部的結(jié)構(gòu)、重量和運(yùn)轉(zhuǎn)性能。因此,在腕部設(shè)計(jì)時(shí),必須力求結(jié)構(gòu)緊湊,重量輕。
(2)結(jié)構(gòu)考慮,合理布局
腕部作為機(jī)械手的執(zhí)行機(jī)構(gòu),又承擔(dān)連接和支撐作用,除保證力和運(yùn)動(dòng)的要求外,要有足夠的強(qiáng)度、剛度外,還應(yīng)綜合考慮,合理布局,解決好腕部與臂部和手部的連接。
(3) 必須考慮工作條件
對(duì)于本設(shè)計(jì),機(jī)械手的工作條件是在工作場(chǎng)合中搬運(yùn)加工的棒料,因此不太受環(huán)境影響,沒(méi)有處在高溫和腐蝕性的工作介質(zhì)中,所以對(duì)機(jī)械手的腕部沒(méi)有太多不利因素。
5.2.2 腕部的結(jié)構(gòu)以及選擇
(1) 具有一個(gè)自由度的回轉(zhuǎn)驅(qū)動(dòng)的腕部結(jié)構(gòu)。它具有結(jié)構(gòu)緊湊、靈活等優(yōu)點(diǎn)而被廣腕部回轉(zhuǎn),總力矩M,需要克服以下幾種阻力:克服啟動(dòng)慣性所用?;剞D(zhuǎn)角由動(dòng)片和靜片之間允許回轉(zhuǎn)的角度來(lái)決定。
(2) 齒條活塞驅(qū)動(dòng)的腕部結(jié)構(gòu)。在要求回轉(zhuǎn)角大于270°的情況下,可采用齒條活塞驅(qū)動(dòng)的腕部結(jié)構(gòu)。這種結(jié)構(gòu)外形尺寸較大,一般適用于懸掛式臂部。
(3) 具有兩個(gè)自由度的回轉(zhuǎn)驅(qū)動(dòng)的腕部結(jié)構(gòu)。它使腕部具有水平和垂直轉(zhuǎn)動(dòng)的兩個(gè)自由度。[11]
5.2.3 腕部設(shè)計(jì)考慮的參數(shù)
夾取工件最大重量100Kg,回轉(zhuǎn)360°。
驅(qū)動(dòng)手腕回轉(zhuǎn)時(shí)的驅(qū)動(dòng)力矩必須克服手腕起動(dòng)時(shí)所產(chǎn)生的慣性力矩必須克服手腕起動(dòng)時(shí)所產(chǎn)生的慣性力矩,手腕的轉(zhuǎn)動(dòng)軸與支承孔處的摩擦阻力矩,動(dòng)片與缸徑、定片、端蓋等處密封裝置的摩擦阻力矩以及由于轉(zhuǎn)動(dòng)的重心與軸線不重合所產(chǎn)生的偏重力矩。手腕轉(zhuǎn)動(dòng)時(shí)所需要的驅(qū)動(dòng)力矩可按下式計(jì)算:
(1)腕部回轉(zhuǎn)支承處的摩擦力矩。
式中——軸承處支支反力,可由靜力平衡方程求得。
D1、D2——軸承直徑。
f ——軸承的摩擦系數(shù),選用滾動(dòng)軸承f =0.02。
為簡(jiǎn)化計(jì)算,取
(2)克服由工件重心偏置所需的力矩
式中 e——工件重心到手腕回轉(zhuǎn)軸線的垂直距離。
設(shè)計(jì)的工件重心與手腕的回轉(zhuǎn)中心線重合,所以。
(3)克服啟動(dòng)慣性所需的力矩。
根據(jù)腕部角速度及啟動(dòng)過(guò)程轉(zhuǎn)過(guò)的角度按下式計(jì)算:
[10] (4-3)
式中 ——工件對(duì)手腕回轉(zhuǎn)軸線的轉(zhuǎn)動(dòng)慣量。
J——手腕回轉(zhuǎn)部分對(duì)腕部回轉(zhuǎn)軸線的轉(zhuǎn)動(dòng)慣量。
——手腕回轉(zhuǎn)過(guò)程的角速度。
——啟動(dòng)過(guò)程所需轉(zhuǎn)過(guò)的角度。
(4)夾取棒料直徑50-250mm,長(zhǎng)度300-1000mm,最大重量100Kg,當(dāng)手部回轉(zhuǎn)180°時(shí),計(jì)算力矩。
手抓、手抓驅(qū)動(dòng)液壓缸及回轉(zhuǎn)缸轉(zhuǎn)動(dòng)件等效為一個(gè)圓柱體,長(zhǎng)為1000mm,直徑250mm,
摩擦力矩
啟動(dòng)過(guò)程所轉(zhuǎn)過(guò)的角度=18°=0.314rad,等速轉(zhuǎn)過(guò)角速度
(4-4)
查取轉(zhuǎn)動(dòng)慣量公式有:
(4-5)
代入得: (4-6)
(4-7)
5.3 機(jī)身回轉(zhuǎn)結(jié)構(gòu)的選擇
實(shí)現(xiàn)手臂回轉(zhuǎn)運(yùn)動(dòng)的機(jī)構(gòu)形式是多種多樣的,常用的有回轉(zhuǎn)液壓缸、齒輪傳動(dòng)機(jī)構(gòu)、鏈輪傳動(dòng)機(jī)構(gòu)等。齒輪傳動(dòng)的主要特點(diǎn)有:效率高,結(jié)構(gòu)緊湊,工作可靠、壽命長(zhǎng)、傳動(dòng)比穩(wěn)定,但是齒輪傳動(dòng)的制造及安裝精度要求高,價(jià)格較貴,傳動(dòng)較大力矩時(shí)容易磨損。鏈輪傳動(dòng)傳動(dòng)效率高,制造與安裝精度要求較低,但是鏈傳動(dòng)不宜用在載荷變化很大、高速和急速反向的傳動(dòng)中。回轉(zhuǎn)液壓缸結(jié)構(gòu)簡(jiǎn)單、輸出力大、性能穩(wěn)定可靠、使用維護(hù)方便、應(yīng)用范圍廣,適宜用在載荷變化大,急速反向的傳動(dòng)中。綜上所述,回轉(zhuǎn)運(yùn)動(dòng)機(jī)構(gòu)選用齒輪回轉(zhuǎn)機(jī)構(gòu)。[14]
5.4 機(jī)械手最終設(shè)計(jì)三維圖
圖5-4:自由度搬運(yùn)機(jī)械手總圖
第六章 系統(tǒng)控制部分
控制系統(tǒng)的程序設(shè)計(jì)是本論文的核心部分,程序的設(shè)計(jì)關(guān)系到機(jī)械手能準(zhǔn)確移動(dòng)到工件坐標(biāo)的重要標(biāo)志,下面一一解說(shuō)本論文的程序設(shè)計(jì)的過(guò)程。
6.1 應(yīng)用背景與要求
在工業(yè)生產(chǎn)和其他領(lǐng)域內(nèi),由于工作的需要,人們經(jīng)常受到高溫、腐蝕及有毒氣體等因素的危害,增加了工人的勞動(dòng)強(qiáng)度,甚至于危機(jī)生命。工業(yè)機(jī)器人的誕生,代替人工在高溫和危險(xiǎn)的作業(yè)區(qū)進(jìn)行作業(yè),并可根據(jù)工件的變化及運(yùn)動(dòng)流程的要求隨時(shí)更改相關(guān)參數(shù)。在本論文中的設(shè)計(jì)中,要求程序簡(jiǎn)單易懂,符合一線操作的需要。
6.2 組成部分
6.2.1 關(guān)節(jié)的限位控制
因?yàn)闄C(jī)器人的旋轉(zhuǎn)部分為關(guān)節(jié)式,所以在機(jī)械手臂旋轉(zhuǎn)的的時(shí)候存在極限位置,為了避免機(jī)器人關(guān)節(jié)不被損壞和步進(jìn)電機(jī)的負(fù)載超額而燒毀,即在機(jī)械手臂的每個(gè)關(guān)節(jié)處裝有限位裝置,如圖6.1所示。
圖6.1 凸輪式壓塊限位開(kāi)關(guān)
6.2.2 工件坐標(biāo)系的測(cè)量與計(jì)算
為操作方便,計(jì)算簡(jiǎn)潔,坐標(biāo)系的計(jì)算結(jié)果由三對(duì)光目傳感器測(cè)得,在系統(tǒng)啟動(dòng)后,光目傳感器開(kāi)始工作,測(cè)量的數(shù)據(jù)結(jié)果直接與存儲(chǔ)在PLC中的程序進(jìn)行計(jì)算得出結(jié)果,此設(shè)計(jì)中選擇的步進(jìn)電機(jī)的步距角為0.9°,在程序的設(shè)計(jì)中將0.9°進(jìn)行正切變換得出的數(shù)據(jù)與公式計(jì)算出來(lái)的結(jié)果被除,即各個(gè)步進(jìn)電機(jī)轉(zhuǎn)過(guò)的角度所需要的脈沖當(dāng)量。部分程序如下:
6.2.3 機(jī)械手的張合控制
由于機(jī)械手的張合是通過(guò)液壓缸來(lái)控制的,怎么樣來(lái)判斷機(jī)械手在夾取或放下工件時(shí)所需的張合角度?現(xiàn)在機(jī)械手的內(nèi)側(cè)裝壓力傳感器來(lái)解決,在系統(tǒng)工作前調(diào)好所需的壓力值。
6.2.4 公式之間的轉(zhuǎn)換
存儲(chǔ)到PLC中的程序的數(shù)學(xué)表達(dá)式詳情請(qǐng)參照第三章的內(nèi)容。
6.2.5 計(jì)算結(jié)果