裝配圖車床主軸箱設計(含cad圖)
裝配圖車床主軸箱設計(含cad圖),裝配,車床,主軸,設計,cad
車床主軸箱設計說明書
目 錄
一、設計目的 -1-
二、設計步驟 -1-
1.運動設計 -1-
1.1已知條件 -1-
1.2結構分析式 -1-
1.3 繪制轉速圖 -2-
1.4 繪制傳動系統(tǒng)圖 -5-
2.動力設計 -5-
2.1 確定各軸轉速 -5-
2.2 帶傳動設計 -6-
2.3 各傳動組齒輪模數(shù)的確定和校核 -7-
3. 齒輪強度校核 -9-
3.1校核a傳動組齒輪 -9-
3.2 校核b傳動組齒輪 -10-
3.3校核c傳動組齒輪 -11-
4. 主軸撓度的校核 -13-
4.1 確定各軸最小直徑 -13-
4.2軸的校核 -13-
5. 主軸最佳跨距的確定 -14-
5.1 選擇軸頸直徑,軸承型號和最佳跨距 -14-
5.2 求軸承剛度 -14-
6. 各傳動軸支承處軸承的選擇 -15-
7. 主軸剛度的校核 -15-
7.1 主軸圖 -15-
7.2 計算跨距 -16-
三、總結 -17-
四、參考文獻 -18-
一、設計目的
通過機床主運動機械變速傳動系統(tǒng)得結構設計,在擬定傳動和變速的結構方案過程中,得到設計構思、方案分析、結構工藝性、機械制圖、零件計算、編寫技術文件和查閱技術資料等方面的綜合訓練,樹立正確的設計思想,掌握基本的設計方法,并具有初步的結構分析、結構設計和計算能力。
二、設計步驟
1.運動設計
1.1已知條件
[1]確定轉速范圍:主軸最小轉速。
[2]確定公比:
[3]轉速級數(shù):
1.2結構分析式
⑴ ⑵ [3]
從電動機到主軸主要為降速傳動,若使傳動副較多的傳動組放在較接近電動機處可使小尺寸零件多些,大尺寸零件少些,節(jié)省材料,也就是滿足傳動副前多后少的原則,因此取方案。在降速傳動中,防止齒輪直徑過大而使徑向尺寸常限制最小傳動比 ;在升速時為防止產(chǎn)生過大的噪音和震動常限制最大轉速比。在主傳動鏈任一傳動組的最大變速范圍。在設計時必須保證中間傳動軸的變速范圍最小,
根據(jù)中間傳動軸變速范圍小的原則選擇結構網(wǎng)。從而確定結構網(wǎng)如下:
檢查傳動組的變速范圍時,只檢查最后一個擴大組:
其中,,
所以 ,合適。
1.3 繪制轉速圖
⑴選擇電動機
一般車床若無特殊要求,多采用Y系列封閉式三相異步電動機,根據(jù)原則條件選擇Y-132M-4型Y系列籠式三相異步電動機。
⑵分配總降速傳動比
總降速傳動比
又電動機轉速不符合轉速數(shù)列標準,因而增加一定比傳動副。
[3]確定傳動軸軸數(shù)
傳動軸軸數(shù) = 變速組數(shù) + 定比傳動副數(shù) + 1 = 3 + 1 + 1 = 5。
⑷確定各級轉速并繪制轉速圖
由 z = 12確定各級轉速:
1400、1000、710、500、355、250、180、125、90、63、45、31.5r/min。
在五根軸中,除去電動機軸,其余四軸按傳動順序依次設為Ⅰ、Ⅱ、Ⅲ、Ⅳ。Ⅰ與Ⅱ、Ⅱ與Ⅲ、Ⅲ與Ⅳ軸之間的傳動組分別設為a、b、c?,F(xiàn)由Ⅳ(主軸)開始,確定Ⅰ、Ⅱ、Ⅲ軸的轉速:
① 先來確定Ⅲ軸的轉速
傳動組c 的變速范圍為,結合結構式,
Ⅲ軸的轉速只有一和可能:
125、180、250、355、500、710r/min。
② 確定軸Ⅱ的轉速
傳動組b的級比指數(shù)為3,希望中間軸轉速較小,因而為了避免升速,又不致傳動比太小,可取
,
軸Ⅱ的轉速確定為:355、500、710r/min。
③確定軸Ⅰ的轉速
對于軸Ⅰ,其級比指數(shù)為1,可取
,,
確定軸Ⅰ轉速為710r/min。
由此也可確定加在電動機與主軸之間的定傳動比。下面畫出轉速圖(電動機轉速與主軸最高轉速相近)。
[5]確定各變速組傳動副齒數(shù)
①傳動組a:
查表8-1, ,,
時:……57、60、63、66、69、72、75、78……
時:……58、60、63、65、67、68、70、72、73、77……
時:……58、60、62、64、66、68、70、72、74、76……
可取72,于是可得軸Ⅰ齒輪齒數(shù)分別為:24、30、36。
于是,,
可得軸Ⅱ上的三聯(lián)齒輪齒數(shù)分別為:48、42、36。
②傳動組b:
查表8-1, ,
時:……69、72、73、76、77、80、81、84、87……
時:……70、72、74、76、78、80、82、84、86……
可取 84,于是可得軸Ⅱ上兩聯(lián)齒輪的齒數(shù)分別為:22、42。
于是 ,,得軸Ⅲ上兩齒輪的齒數(shù)分別為:62、42。
③傳動組c:
查表8-1,,
時:……84、85、89、90、94、95……
時: ……72、75、78、81、84、87、89、90……
可取 90.
為降速傳動,取軸Ⅲ齒輪齒數(shù)為18;
為升速傳動,取軸Ⅳ齒輪齒數(shù)為30。
于是得,
得軸Ⅲ兩聯(lián)動齒輪的齒數(shù)分別為18,60;
得軸Ⅳ兩齒輪齒數(shù)分別為72,30。
1.4 繪制傳動系統(tǒng)圖
根據(jù)軸數(shù),齒輪副,電動機等已知條件可有如下系統(tǒng)圖:
2.動力設計
2.1 確定各軸轉速
⑴確定主軸計算轉速:主軸的計算轉速為
⑵各傳動軸的計算轉速:
軸Ⅲ可從主軸90r/min按72/18的傳動副找上去,軸Ⅲ的計算轉速
125r/min;軸Ⅱ的計算轉速為355r/min;軸Ⅰ的計算轉速為710r/min。
[3]各齒輪的計算轉速
傳動組c中,18/72只需計算z = 18 的齒輪,計算轉速為355r/min;60/30只需計算z = 30的齒輪,計算轉速為250r/min;傳動組b計算z = 22的齒輪,計算轉速為355r/min;傳動組a應計算z = 24的齒輪,計算轉速為710r/min。
[4]核算主軸轉速誤差
所以合適。
2.2 帶傳動設計
電動機轉速n=1440r/min,傳遞功率P=7.5KW,傳動比i=2.03,兩班制,
一天運轉16.1小時,工作年數(shù)10年。
⑴確定計算功率 取1.1,則
⑵選取V帶型
根據(jù)小帶輪的轉速和計算功率,選B型帶。
⑶確定帶輪直徑和驗算帶速
查表小帶輪基準直徑,
驗算帶速成
其中 -小帶輪轉速,r/min;
-小帶輪直徑,mm;
,合適。
[4]確定帶傳動的中心距和帶的基準長度
設中心距為,則
0.55()a2()
于是 208.45a758,初取中心距為400mm。
帶長
查表取相近的基準長度,。
帶傳動實際中心距
[5]驗算小帶輪的包角
一般小帶輪的包角不應小于。
。合適。
[6]確定帶的根數(shù)
其中: -時傳遞功率的增量;
-按小輪包角,查得的包角系數(shù);
-長度系數(shù);
為避免V型帶工作時各根帶受力嚴重不均勻,限制根數(shù)不大于10。
[7]計算帶的張緊力
其中: -帶的傳動功率,KW;
v-帶速,m/s;
q-每米帶的質量,kg/m;取q=0.17kg/m。
v = 1440r/min = 9.42m/s。
[8]計算作用在軸上的壓軸力
2.3 各傳動組齒輪模數(shù)的確定和校核
⑴模數(shù)的確定:
a傳動組:分別計算各齒輪模數(shù)
先計算24齒齒輪的模數(shù):
其中: -公比 ; = 2;
-電動機功率; = 7.5KW;
-齒寬系數(shù);
-齒輪傳動許允應力;
-計算齒輪計算轉速。
, 取= 600MPa,安全系數(shù)S = 1。
由應力循環(huán)次數(shù)選取
,取S=1,。
取m = 4mm。
按齒數(shù)30的計算,,可取m = 4mm;
按齒數(shù)36的計算,, 可取m = 4mm。
于是傳動組a的齒輪模數(shù)取m = 4mm,b = 32mm。
軸Ⅰ上齒輪的直徑:
。
軸Ⅱ上三聯(lián)齒輪的直徑分別為:
b傳動組:
確定軸Ⅱ上另兩聯(lián)齒輪的模數(shù)。
按22齒數(shù)的齒輪計算:
可得m = 4.8mm;
取m = 5mm。
按42齒數(shù)的齒輪計算:
可得m = 3.55mm;
于是軸Ⅱ兩聯(lián)齒輪的模數(shù)統(tǒng)一取為m = 5mm。
于是軸Ⅱ兩聯(lián)齒輪的直徑分別為:
軸Ⅲ上與軸Ⅱ兩聯(lián)齒輪嚙合的兩齒輪直徑分別為:
c傳動組:
取m = 5mm。
軸Ⅲ上兩聯(lián)動齒輪的直徑分別為:
軸四上兩齒輪的直徑分別為:
3. 齒輪強度校核:計算公式
3.1校核a傳動組齒輪
校核齒數(shù)為24的即可,確定各項參數(shù)
⑴ P=8.25KW,n=710r/min,
⑵確定動載系數(shù):
齒輪精度為7級,由《機械設計》查得使用系數(shù)
⑶
⑷確定齒向載荷分配系數(shù):取齒寬系數(shù)
非對稱
,查《機械設計》得
⑸確定齒間載荷分配系數(shù):
由《機械設計》查得
⑹確定動載系數(shù):
⑺查表 10-5
⑻計算彎曲疲勞許用應力
由圖查得小齒輪的彎曲疲勞強度極限。
圖10-18查得 ,S = 1.3
,
故合適。
3.2 校核b傳動組齒輪
校核齒數(shù)為22的即可,確定各項參數(shù)
⑴ P=8.25KW,n=355r/min,
⑵確定動載系數(shù):
齒輪精度為7級,由《機械設計》查得使用系數(shù)
⑶
⑷確定齒向載荷分配系數(shù):取齒寬系數(shù)
非對稱
,查《機械設計》得
⑸確定齒間載荷分配系數(shù):
由《機械設計》查得
⑹確定動載系數(shù):
⑺查表 10-5
⑻計算彎曲疲勞許用應力
由圖查得小齒輪的彎曲疲勞強度極限。
圖10-18查得 ,S = 1.3
,
故合適。
3.3校核c傳動組齒輪
校核齒數(shù)為18的即可,確定各項參數(shù)
⑴ P=8.25KW,n=355r/min,
⑵確定動載系數(shù):
齒輪精度為7級,由《機械設計》查得使用系數(shù)
⑶
⑷確定齒向載荷分配系數(shù):取齒寬系數(shù)
非對稱
,查《機械設計》得
⑸確定齒間載荷分配系數(shù):
由《機械設計》查得
⑹確定動載系數(shù):
⑺查表 10-5
⑻計算彎曲疲勞許用應力
由圖查得小齒輪的彎曲疲勞強度極限。
圖10-18查得 ,S = 1.3
,
故合適。
4. 主軸撓度的校核
4.1 確定各軸最小直徑
[1]Ⅰ軸的直徑:
[2]Ⅱ軸的直徑:
[3]Ⅲ軸的直徑:
[4]主軸的直徑:
4.2軸的校核
Ⅰ軸的校核:通過受力分析,在一軸的三對嚙合齒輪副中,中間的兩對齒輪對Ⅰ軸中點處的撓度影響最大,所以,選擇中間齒輪嚙合來進行校核
。
Ⅱ軸、Ⅲ軸的校核同上。
5. 主軸最佳跨距的確定
400mm車床,P=7.5KW.
5.1 選擇軸頸直徑,軸承型號和最佳跨距
前軸頸應為75-100mm,初選=100mm,后軸頸取,前軸承為NN3020K,后軸承為NN3016K,根據(jù)結構,定懸伸長度
5.2 求軸承剛度
考慮機械效率
主軸最大輸出轉距
床身上最大加工直徑約為最大回轉直徑的60%,取50%即200,故半徑為0.1.
切削力
背向力
故總的作用力
次力作用于頂在頂尖間的工件上主軸尾架各承受一半,
故主軸軸端受力為
先假設
前后支撐分別為
根據(jù)
。
6. 各傳動軸支承處軸承的選擇
主軸 前支承:NN3020K;中支承:N219E;后支承:NN3016K
Ⅰ軸 前支承:30207;后支承:30207
Ⅱ軸 前支承:30207;中支承:NN3009;后支承:30207
Ⅲ軸 前支承:30208;后支承:30208
7. 主軸剛度的校核
7.1 主軸圖:
7.2 計算跨距
前支承為雙列圓柱滾子軸承,后支承為雙列圓柱滾子軸承
當量外徑
主軸剛度:由于
故根據(jù)式(10-8)
對于機床的剛度要求,取阻尼比
當v=50m/min,s=0.1mm/r時,,
取
計算
可以看出,該機床主軸是合格的.
三、總結
金屬切削機床的課程設計任務完成了,雖然設計的過程比較繁瑣,而且剛開始還有些不知所措,但是在同學們的共同努力下,再加上老師的悉心指導,我終于順利地完成了這次設計任務。本次設計鞏固和深化了課堂理論教學的內(nèi)容,鍛煉和培養(yǎng)了我綜合運用所學過的知識和理論的能力,是我獨立分析、解決問題的能力得到了強化.
四、參考文獻
[1]工程學院機械制造教研室 主編.金屬切削機床指導書.
[2]濮良貴 紀名剛主編.機械設計(第七版).北京:高等教育出版社,2001年6月
[3]毛謙德 李振清主編.《袖珍機械設計師手冊》第二版.機械工業(yè)出版社,2002年5月
[4]《減速器實用技術手冊》編輯委員會編.減速器實用技術手冊.北京:機械工業(yè)出版社,1992年
[5]戴曙 主編.金屬切削機床.北京:機械工業(yè)出版社,2005年1月
[6]《機床設計手冊》編寫組 主編.機床設計手冊.北京:機械工業(yè)出版社,1980年8月
[7]華東紡織工學院 哈爾濱工業(yè)大學 天津大學主編.機床設計圖冊.上海:上??茖W技術出版社,1979年6月
收藏