購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
英文原文
Study of Inherent Safety Mine hoist based on modern design methods
Abstract—As a modern security design, Inherent Safety means that equipment and facilities is able to contain the inherent fundamental features to prevent accidents. Mine hoist is the most important equipment in the coal production. How to achieve safe, reliable, efficient production has been the focus study at home and abroad. Inherent safety is reflected in hoist design, primarily through the design measures to improve the operation of hoist safety and reliability. In this paper, Inherent Safety theory is applied in the design of mine hoist, to proposed the design method by using the software of PRO/E??PLC, Labview etc..
Keywords-Mine hoist; Inherent Safety; PRO/E; PLC; Labview
I. INTRODUCTION
In coal production, mine hoist is the equipment to carry coal, gangue, materials, workers and equipments along the rockshaft, the only way linked underground and aboveground, known as mine throat. Mine hoist is a large-scale reciprocating machinery which has the feature of own big inertia, load changes, running speed, and wide range et al.. The advantages and disadvantages of its operating performance, not only directly affect the normal production and coal production efficiency, but also relate to equipment and personal safety. In recent years, mine hoist failures and accidents have happened at home and abroad which have paid a heavy price to coal companies. Therefore, the production technology and safety of mine hoist are higher, and its mechanical manufacturing technology and electrical control technology has been an important research area to the international machine building industry and the electric control industry.
Inherent Safety means that equipment and facilities is able to contain the inherent fundamental features to prevent accidents. Inherent Safety lies in design, through continuous improvement, to prevent accidents due to the equipment itself failures. Inherent safety is reflected in hoist design, primarily through the design measures to improve the operation of hoist safety and reliability. In this paper, Inherent Safety theory is applied in the design of mine hoist, to proposed the inherent safety design method by use the software of PRO/E PLC, Labview etc..
II. INHERENT SAFETY THEORY
The term of inherent safety originates the development of world space technology in the 1950s. The concept is widely accepted closely linked with scientific technological progress and human understanding of safety culture. The concept of inherent safety produced after the World War II which became major safety concept in many industrialized countries since the mid 20th century.
Inherent safety design as the basic method of hazard control, by selecting safe materials, process routes, mechanical equipment, devices, to eliminate or control hazards source rather than relying on "additional" security measures or management measures to control them. As inherent safety design, firstly analyze and identify hazards that may occur in system, and then choose the best methods to eliminate, control hazards, which reflected in project design.
Ⅲ. THE DESIGN OF INHERENT SAFETY MINE HOIST
Mine hoist mainly includs the working device, control system, transmission system and drag, protection systems and other components. To the inherent safety mine hoist design, mainly the mechanical system, control system and monitor system is the major part to considered.
A. In-depth investigations to find malfunction
The concept of inherent safety is required safety all the time in the product design process. That is, the equipment has little malfunction as much as possible during the operation and has long normal operation cycle length. How can design inherent safety equipment, the most important thing is understanding enough to the equipment, especially in work. After in-depth research, fully understanding the situation, try the best to reduce or eliminate the fault in the design. After in-depth understanding of research, design product.
B. Mechanical System
The traditional method of product has long design cycle, high costs. However, the virtual prototype technology has the advantage in saving the design cost, shortening the design circle, by using the method of modeling, simulation first and then builds the physical prototype. Therefore, the virtual design is the developing trends of mechanical design. In mechanical system design, the application of virtual prototype is used to design mine hoist, not only speeded up the design process, also simulated a variety of conditions to the virtual prototype to discover design faults, to improve the design, to improve mine hoist performance.
Mine hoist mechanical system is composed of spindle, roller, reducer, motor, brakes and other components. In its design, virtual design software PRO / E is applied to establish hoist prototype, application of simulation software ADAMS is used to simulate and optimize the design. Specific process shown in Figure 1:
Figure 1. Mechanical system design
C. Control system design
Mine hoist control system includes start, run, brake, etc., the requirements in control system are:
In normal hoist operation, participation in hoist speed control, brake the hoist when reaching the destination, known as the service braking;
In case of emergency, can quickly slow down as required, brake hoist, to prevent the expansion of the accident, that is the safety braking; Participate in the hoist speed control when decelerati; To double-roller hoist, should brake the moving roller and fix roller respectively when regulating rope length, replacement level and changing rope, so that, moving roller would not move when spindle rotates with the fixed roller.
Most of mine hoists in China (more than 70%) use the traditional electric control system (tkd-a as the representative). Tkd control system is composed of relay logic circuits, large air contactors, tachometer generator etc., which is a touch control system. After years of development, tkd-a series of electric control system has formed its own characteristics, but its shortcomings are obvious. Its electrical circuit is too complicated, multi-line, causing hoist parking and accidents occurred due to electrical fault. With the computer and digital technology, to form a digital hoist control system of PLC has become possible. PLC control system has high control precision, parameter stability, simple hardware structure, self-diagnostic capability and communication networking function.
Mine hoist control system based on PLC technology structure shown in Figure 2, mainly including the following components: the main plc control circuits, hoist route detection and display circuits, speed detection, and signal circuits. The PLC of the main control circuits uses Mitsubishi FX2N series in Japan which more domestic applications.
Figure 2 PLC electric control system
D. Monitoring system design
To ensure safe operation of the hoist, except for selecting the reasonable operation design parameters, the use of advanced control system, should also monitor the technological parameters on regular, conscientiously do performance test work to master the hoist performance, discover the defects in time, eliminate hidden danger, avoid unnecessary losses. In addition, the hoist operation state can be improved to work in the best conditions based on test data. Therefore, the hoist could work safely, reliably, have high efficiency, and extend its work life.
Virtual instrument technology is computer-based instrumentation and measurement technology, is loaded some software and hardware on the computer with similar appearance and performance of the actual independent instrument. The user operating the computer, like manipulating a especially conventional electronic devices designed theirs. The essence of virtual instrument technology is that hardware softwarized technology, take full advantage of the latest computer technology to implement and expand the functions of traditional instruments.
LabVIEW (laboratory virtual instrument engineering workbench) is a graphical programming and development environment, also known as "G" language. It is widely used by industry, academia and research laboratories, accepted as the standard data acquisition and instrument control software. LabVIEW not only provides and complies with all the functions of hardware and data acquisition cards communications of GPIB, VXI, RS-232 and RS-485 protocol, and built-in library functions support for TCP / IP, ActiveX and other software standards. The software for scientists and engineers is a programming language, it provides a simple, intuitive graphical programming mode, saves a lot of development time, has complete function, best embodied style of virtual instrument.
In response to these circumstances, developed a mine hoist Integrate Performance Monitoring System based on virtual instrument LabVIEW-based. Show in Figure 3. With signal conditioning and data acquisition card to receive signals from sensors, then sent the received signal to the virtual instrument software platform, enables the following features:
(1) show speed, acceleration, braking time, displacement, oil pressure, delay time and other relevant parameters in digital, and display speed, acceleration, traction, displacement and hydraulic curves.
(2)Dynamically monitor the hydraulic oil pressure and oil pump running station, based on these parameters to avoid important braking system failure.
(3)Test brake air travel time, relay delay time and other time parameters.
(4)inquiry to the measured curve and hoist parameters; print a test report.
Figure 3. Diagram of test system
The monitoring system has characteristics such as compact, light weight, high precision, testing convenient and flexible, feature-rich software etc.. the system can not only display automatically test results, but also finish multiple functions, for example , data transmission, analysis, processing, storage and report printing. The system is high precision, can easily monitor the hoist operation state, to ensure the reliability of hoist operation.
Ⅳ. CONCLUSIONS
In this paper, used virtual design software to design the hoist mechanical system, PLC to design control system, applied virtual instrument software-LABVIEW to design monitor system. Therefore, the mine hoist designed has good mechanical properties and safe operation, monitoring easy.
REFERENCES
[1] Weng qishu. The inherent safety and checks of cabin[J]. navigation
Technology 2006 (3):50-52. (in Chinese)
[2] Li jangbo. Study of Test System of Composite Characteristic of Devices Based on
Virtual instrument[D]. A Dissertation Submitted to Hebei University of
Engineering For the Academic Degree of Master of Engineering, 2007. (in
Chinese)
[3] Wang chengqin, Li wei , Meng baoxing et al... Random vibration testing system of
hoisting gear based on virtual instrument. Coal mine machinery, 2008(4) :118-120.
(in Chinese)
[4] Chen baozhi ??Wu min. concept and practices of inherent safety[J]. Journal of
Safety Science and Technology,2008(6):79-83. (in Chinese)
[5] Xu chenyi, Wu yongdong, Huanghe et al.. A PLC-based mine hoist control system
design [J]. LC&FA, 2008(10):52-56 (in Chinese)
中文譯文
基于現(xiàn)代設(shè)計方法的礦井提升機(jī)內(nèi)在安全性的研究
摘要:作為一個現(xiàn)代的安全設(shè)計,內(nèi)在的安全性意味著設(shè)備和設(shè)施能夠包含防止事故發(fā)生的固有基本特征。礦山提升機(jī)是煤炭生產(chǎn)中最重要的設(shè)備。如何獲得安全、可靠、效率高的產(chǎn)品,已經(jīng)成為國內(nèi)外研究的焦點(diǎn)。內(nèi)在安全性在提升機(jī)的設(shè)計中主要體現(xiàn)在通過設(shè)計方法來提高操作提升機(jī)的安全性和可靠性。在本文中,把內(nèi)在安全性理論應(yīng)用到了礦井提升機(jī)的設(shè)計中,利用PRO/E、PLC、Labview等軟件提出了設(shè)計方法。
關(guān)鍵字:礦用提升機(jī);內(nèi)在安全性;PRO/E;PLC;Labview
Ⅰ.介紹
在煤礦生產(chǎn)中,礦井提升機(jī)是沿著巖石豎井?dāng)y帶煤炭、煤矸石、材料、工人和其他設(shè)施的設(shè)備,豎井是唯一的和地上地下連接的方式,就是我們所知的煤礦的喉嚨。礦井提升機(jī)是一種具有的大慣性、負(fù)荷變化、運(yùn)行速度快等特征的大型往復(fù)式機(jī)械。它本身操作性能的優(yōu)點(diǎn)和缺點(diǎn)不僅直接影響到正常的產(chǎn)量和煤炭生產(chǎn)效率,而且關(guān)系著設(shè)備和人身安全。近年來,在國內(nèi)外發(fā)生的礦用提升機(jī)失效和意外情況,已經(jīng)讓煤炭企業(yè)付出了沉重的代價。因此,生產(chǎn)技術(shù)和礦用提升機(jī)的安全性越高,那么它的機(jī)械制造技術(shù)與電氣控制技術(shù)就會成為一個國際機(jī)械建筑行業(yè)和電氣控制行業(yè)的重要研究領(lǐng)域。
本質(zhì)安全性意味著設(shè)備和設(shè)施能夠包含防止事故發(fā)生的本質(zhì)基本特征。本質(zhì)安全性在于設(shè)計、通過持續(xù)的改進(jìn),才能避免由于設(shè)備本身的失效而造成的事故,本質(zhì)安全性在提升機(jī)的設(shè)計中主要體現(xiàn)在通過設(shè)計方法來提高操作提升機(jī)的安全性和可靠性。在本文中,把本質(zhì)安全性理論應(yīng)用到了礦井提升機(jī)的設(shè)計中,利用PRO/E、PLC、Labview等軟件提出了設(shè)計方法。
Ⅱ.本質(zhì)安全理論
長期的固有安全性源于世界空間技術(shù)在20世紀(jì)50年代的發(fā)展。這個概念被廣泛的認(rèn)為是科學(xué)技術(shù)進(jìn)步與人類對安全文化了解的密切聯(lián)系。在第二次世界大戰(zhàn)后產(chǎn)生的本質(zhì)安全性概念成為20世紀(jì)中期以來許多工業(yè)化國家的主要安全概念。
作為危險控制的基本方法,本質(zhì)安全設(shè)計是通過選擇安全的材料、工藝路線、機(jī)械設(shè)備、裝置以消除或控制危險源,而不是依賴“額外的”的安全措施或管理措施來控制他們。作為本質(zhì)安全設(shè)計,首先應(yīng)分析并找出可能出現(xiàn)在系統(tǒng)里的危險,然后選擇最佳的方法來消除、控制危險,這個方法反映在項(xiàng)目設(shè)計中。
Ⅲ.礦用提升機(jī)的本質(zhì)安全設(shè)計
礦井提升機(jī)主要包括工作裝置、控制系統(tǒng)、傳輸系統(tǒng)和阻力、保護(hù)系統(tǒng)以及其他組成部分。在本質(zhì)安全的礦井提升機(jī)設(shè)計中,機(jī)械系統(tǒng)、控制系統(tǒng)和監(jiān)控系統(tǒng)是需要考慮的主要部分。
A:深入調(diào)查發(fā)現(xiàn)故障
本質(zhì)安全性的概念是指在產(chǎn)品的設(shè)計過程中一直需要安全性。也就是說,設(shè)備應(yīng)盡可能少的在運(yùn)行過程中出現(xiàn)故障,并且具有長期的正常運(yùn)行周期。怎樣才能設(shè)計出本質(zhì)安全的設(shè)備,最重要的是能足夠了解設(shè)備,尤其是在工作的時候。經(jīng)過深入研究、充分了解情況,然后盡可能減少或消除設(shè)計中的缺陷。在深層研究的了解后,設(shè)計出產(chǎn)品。
B .機(jī)械系統(tǒng)
傳統(tǒng)的產(chǎn)品設(shè)計方法周期長、成本高。然而,虛擬現(xiàn)實(shí)技術(shù)通過采用建模、仿真,然后建立物理原型的方法從而有了節(jié)約設(shè)計成本、縮短設(shè)計周期的優(yōu)勢。因此,虛擬設(shè)計是機(jī)械設(shè)計發(fā)展的必然趨勢。在機(jī)械系統(tǒng)設(shè)計中,應(yīng)用虛擬樣機(jī)來設(shè)計礦用提升機(jī),不僅提高了設(shè)計速度,而且模擬了虛擬樣機(jī)的各種情況以發(fā)現(xiàn)設(shè)計錯誤,提高設(shè)計、改善礦井提升機(jī)的性能。
礦井提升機(jī)的機(jī)械系統(tǒng)由主軸、卷筒、減速器、電機(jī)、剎車和其他組成部分。在它的設(shè)計中,虛擬設(shè)計軟件PRO / E是用來建立提升機(jī)原型的,模擬軟件ADAMS是用來模擬和優(yōu)化設(shè)計的。具體過程如圖1所示:
圖.1機(jī)械系統(tǒng)設(shè)計
C.控制系統(tǒng)設(shè)計
礦井提升機(jī)控制系統(tǒng)包括啟動、運(yùn)行、剎車等,控制系統(tǒng)的要求是:
在正常的提升機(jī)操作中,參與提升機(jī)的速度控制,到達(dá)目的地的時候制動提升機(jī),稱為制動服務(wù);
萬一發(fā)生緊急情況,可以根據(jù)要求快速慢下來,制動提升機(jī),以防止事故的擴(kuò)大,也就是安全制動;
在減速的時候參與提升機(jī)的速度控制;
對于雙滾筒提升機(jī),在調(diào)節(jié)鋼絲繩長度、更換水平和變化的鋼絲繩時,應(yīng)該分別制動活動卷筒和固定卷筒。這樣以來,當(dāng)主軸隨固定卷筒一起轉(zhuǎn)時,活動卷筒就不能動了。
中國的大部分礦井提升機(jī)(70%以上)使用傳統(tǒng)的電氣控制系統(tǒng)(以TKD-A作為代表)。TKD控制系統(tǒng)由邏輯電路、大型空氣接觸器、轉(zhuǎn)速發(fā)電機(jī)等部分組成,是一個觸摸控制系統(tǒng)。經(jīng)過多年的發(fā)展,TKD-A系列電動控制系統(tǒng)已經(jīng)形成了自身的特點(diǎn),但其存在的缺陷顯而易見。其電路過于復(fù)雜、多線,由于電路故障使提升機(jī)造成停車和事故的發(fā)生。通過運(yùn)用計算機(jī)和數(shù)字技術(shù),形成一個數(shù)字化提升機(jī)的PLC控制系統(tǒng)已成為可能。PLC控制系統(tǒng)具有較高的控制精度、參數(shù)穩(wěn)定、簡單的硬件結(jié)構(gòu)、自診斷能力和網(wǎng)絡(luò)通信功能。
基于PLC控制技術(shù)的礦井提升機(jī)控制系統(tǒng)結(jié)構(gòu)如圖2所示,主要包括以下幾個部分:主要PLC控制電路、提升機(jī)路線的檢測和顯示電路、速度檢測和信號電路。PLC的主要控制電路多采用在國內(nèi)應(yīng)用很多的日本三菱FX2N系列。
圖.2 PLC電子控制系統(tǒng)
D .監(jiān)測系統(tǒng)設(shè)計
為了確保提升機(jī)的安全運(yùn)行,除了選擇合理的操作設(shè)計參數(shù)、采用先進(jìn)的控制系統(tǒng)之外,還應(yīng)該定期監(jiān)控技術(shù)參數(shù)、時常做性能測試工作以掌握提升機(jī)性能、及時發(fā)現(xiàn)缺陷、消除隱患、避免不必要的損失。此外,通過測試數(shù)據(jù)還可以改善提升機(jī)的操作狀態(tài)達(dá)到最佳工作狀況。因此,提升機(jī)可以安全、可靠、高效率的運(yùn)行以延長其運(yùn)行壽命。
虛擬儀器技術(shù)是基于計算機(jī)的儀器和測試技術(shù),被裝載一些計算機(jī)上的硬件和軟件且具有相似的外觀和性能的現(xiàn)實(shí)獨(dú)立儀器。使用這臺計算機(jī)的用戶,就像操縱了一個特殊的設(shè)計其本身的傳統(tǒng)電子設(shè)備虛擬儀器技術(shù)其本質(zhì)就是把硬件軟件化的技術(shù),充分利用先進(jìn)的電腦技術(shù)來補(bǔ)充和擴(kuò)展傳統(tǒng)儀器的功能。
LabVIEW(實(shí)驗(yàn)室虛擬儀器工程工作臺)是一種圖形化程序和開發(fā)環(huán)境,也被稱為“G”的語言。它被廣泛地用工業(yè)、學(xué)術(shù)界和研究實(shí)驗(yàn)室,作為標(biāo)準(zhǔn)的數(shù)據(jù)采集和儀器控制軟件。LabVIEW中不僅提供和支持了所有硬件??和數(shù)據(jù)采集卡的GPIB,VXI總線,RS - 232和RS - 485通信協(xié)議,而且建立了支持TCP / IP,ActiveX和其他軟件標(biāo)準(zhǔn)的內(nèi)置庫函數(shù)。此軟件對科學(xué)家和工程師來說是一個編程語言,它提供了一個簡單、直觀的圖形編程模式,節(jié)省了大量的開發(fā)時間,功能齊全,最佳的體現(xiàn)了虛擬儀器的類型。
針對上述情況,研制出了基于虛擬儀器LabVIEW的礦井,提升機(jī)綜合性能監(jiān)控系統(tǒng)。如圖3所示。通過信號處理和數(shù)據(jù)采集卡從傳感器那里接收信號,然后把接收的信號送到虛擬儀器軟件平臺,具有以下特點(diǎn):
(1)數(shù)字化的顯示速度、加速度、制動時間、位移、油壓、延遲時間和其他相關(guān)參數(shù),并且顯示速度、加速度,牽引力、位移與液壓曲線。
(2)動態(tài)監(jiān)測液壓油壓力和油泵運(yùn)行站,基于這些參數(shù)來避免重要制動系統(tǒng)的失敗。
(3)測試剎車空載時間,繼電器延時時間和其他時間參數(shù)。
(4)調(diào)查實(shí)測曲線和提升機(jī)參數(shù);打印測試報告。
圖.3 測試系統(tǒng)圖表
此監(jiān)控系統(tǒng)具有體積小、重量輕、精度高、測試方便、靈活、富有特色軟件等特點(diǎn)。該系統(tǒng)不僅可以顯示自動測試的結(jié)果,也可以完成的多種功能,例如數(shù)據(jù)傳輸、分析、處理、存儲和報告打印。該系統(tǒng)具有較高的計算精度,可以很輕易地監(jiān)控提升機(jī)的運(yùn)行狀態(tài),以保持提升機(jī)操作的可靠性。
Ⅳ.結(jié)論
在本文中,通過使用虛擬設(shè)計軟件設(shè)計提升機(jī)的機(jī)械系統(tǒng),通過可編程序控制器(PLC)設(shè)計控制系統(tǒng),應(yīng)用虛擬儀器軟件-LABVIEW設(shè)計監(jiān)控系統(tǒng)。因此,這種礦井提升機(jī)的設(shè)計有良好力學(xué)性能和運(yùn)行安全性和監(jiān)測方便的特點(diǎn)。
參考文獻(xiàn)
[1] Weng qishu??团摰谋举|(zhì)安全和檢查[J].
導(dǎo)航技術(shù),2006(3):50-52.(中文)
[2] Li jangbo?;谔摂M儀器的復(fù)合材料設(shè)備測試系統(tǒng)的研究[D].
一篇河北工程大學(xué)的工程碩士學(xué)位論文,2007年。(中文)
[3] Wang chengqin, Li wei, Meng baoxing等?;谔摂M儀器的
提升機(jī)齒輪隨機(jī)性振動測試系統(tǒng)[J]。煤礦機(jī)械,2008(4):
118-120.(中文)
[4] Chen baozhi, Wu min.本質(zhì)安全性的概念和實(shí)踐[J].安全科
學(xué)雜志,2008(6):79-83.(中文)
[5] Xu chenyi, Wu yongdong, Huang he等.一個基于plc的礦井
提升機(jī)控制系統(tǒng)設(shè)計[J].LC&FA,2008(10):52-56(中文)