電位器接線片沖壓工藝與模具設(shè)計(jì)【含CAD圖紙和文檔全套】
ZL50裝載機(jī)總體及工作裝置設(shè)計(jì)
購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。帶三維備注的都有三維源文件,由于部分三維子文件較多,店主做了壓縮打包,都可以保證打開(kāi)的,三維預(yù)覽圖都是店主用電腦打開(kāi)后截圖的,具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:1304139763
Sheet metal forming of magnesium wrought magnesium wrought alloys— formabilityand process technology Abstract New developments at the for Metal Forming and Metal Forming Machine Tools show that magnesium sheets possess excellent forming behavior, if the process is conducted at elevated temperatures. For the evaluation of mechanical properties relevant for forming of magnesium sheets, uni axial tensile tests have been carried out at various temperatures and strain rates. Deep drawing tests with magnesium alloys AZ31B, AZ61B, and M1 show very good formability in a temperature range between 200 and 2508C. Besides temperature, the influence of forming speed on limit drawing ratio has been investigated. The obtained results lead to the conclusion that it is possible to substitute conventional aluminum and steel sheets by using magnesium sheet metal wrought alloys. 1. Introduction In order to reduce fuel consumption, general efforts have been made to decrease the weight of automobile constructions by an increased use of lightweight materials. In this framework, magnesium alloys are of special interest because of their low density of 1.74 g/cm3. Presently, magnesium alloys for the use as automobile parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative has to be seen in components that are manufactured by forming processes. The parts manufactured by this technology are characterized by advantageous mechanical properties and fine-grained microstructure without pores [1]. However, a widespread use of forming technologies for the processing of magnesium alloys is restricted because of insufficient knowledge about the forming technologies and suitable process parameters that have to be applied [2,3]. Automotive body constructions offer a great potential for the application of magnesium sheet metal components. In general, the automotive body completely consists of sheet metal parts and represents a share of about 25% of the entire vehicle mass. Therefore, the substitution of conventional sheet materials by magnesium sheets would lead to essential weight savings in this application. 2. Plastic material properties of magnesium sheets Magnesium alloys show a limited formability at room temperature. This results from the fact that the hexagonal crystal structure and the low tendency to twinning only allow limited deformations. The differently orientated crystallites only show a deformation on the individual base slip plane, which leads to a mutual slip hindrance [4, 5]. A considerable improvement of the forming qualities can be achieved by applying temperature. The considerable increase in formability that occurs in the temperature range from 200 to2258C (depending on alloying composition) was investigated by Siebel [6]. The reason for this effect was found in the thermal activation of pyramid sliding planes in the hexagonal structure [7]. 2.1. Influence of forming temperature on flow stress A detailed evaluation of the deformation properties of magnesium sheets requires the determination of the material’s characteristic values like anisotropy or flow curves [8, 9]. Because systematic investigations in this area are not available, extensive investigations concerning the influence of temperature and strain rate on plastic properties of various magnesium alloys were performed at Institute for Metal Forming and Metal Forming Machine Tools (IFUM). Fig. 1 displays flow curves of magnesium sheet material AZ31B at different temperatures, determined in the uniaxial tensile test according to EN 10002, part 5. It is obvious that the stresses and possible strains largely depend on the forming temperature. The decrease of flow stresses in the temperature range above 2008C attributes to temperature-dependent relaxation. 3. Deep drawing of magnesium alloys In order to investigate the formability of magnesium sheets, deep drawing tests at different forming temperatures were carried out at IFUM with a cylindrical tool system.Fig. 3 shows the results of deep drawing tests at a temperature of 50C. Whereas the deep drawing of the alloy AZ31B using a low drawing ratio of b0