3、]若關于x的不等式組x<3a+2,x>a-4無解,則a的取值范圍是 ( )
A.a≤-3 B.a<-3
C.a>3 D.a≥3
8.[2019·溫州]不等式組x+2>3,x-12≤4的解集為 .?
9.[2019·甘肅]不等式組2-x≥0,2x>x-1的最小整數(shù)解是 .?
10.[2018·山西]2018年國內(nèi)航空公司規(guī)定:旅客乘機時,免費攜帶行李箱的長、寬、高之和不超過115 cm.某廠家生產(chǎn)符合該規(guī)定的行李箱,已知行李箱的寬為20 cm,長與高的比為8∶11,則符合此規(guī)定的行李箱的高的最大值為 cm.?
11.[2019·荊
4、州]對非負實數(shù)x“四舍五入”到個位的值記為(x),即當n為非負整數(shù)時,若n-0.5≤xx,1-2x≥x+72,并在數(shù)軸上表示它的解集.
圖K9-3
13.[2019·赤峰]某校開展校園藝術節(jié)系列活動,派小明到文體超市購買若干個文具袋作為獎品.這種文具袋標價每個10元,請認真閱讀結賬時老板與小明的對話:
圖K9-4
(1)結合兩人的對話內(nèi)容,求小明原計劃購買文具袋多少個?
(2)學校決定,再次
5、購買鋼筆和簽字筆共50支作為補充獎品,兩次購買獎品總支出不超過400元.其中鋼筆標價每支8元,簽字筆標價每支6元,經(jīng)過溝通,這次老板給予8折優(yōu)惠,那么小明最多可購買鋼筆多少支?
14.[2019·瀘州]某出租汽車公司計劃購買A型和B型兩種節(jié)能汽車,若購買A型汽車4輛,B型汽車7輛,共需310萬元;若購買A型汽車10輛,B型汽車15輛,共需700萬元.
(1)A型和B型汽車每輛的價格分別是多少萬元?
(2)該公司計劃購買A型和B型兩種汽車共10輛,費用不超過285萬元,且A型汽車的數(shù)量少于B型汽車的數(shù)量,請你給出費用最省的方案,并求出該方案所需費用.
|拓展提升|
6、
15.[2019·重慶B卷]若數(shù)a使關于x的不等式組x3-2≤14(x-7),6x-2a>5(1-x)有且僅有三個整數(shù)解,且使關于y的分式方程1-2yy-1-a1-y=-3的解為正數(shù),則所有滿足條件的整數(shù)a的值之和是 ( )
A.-3 B.-2 C.-1 D.1
16.[2019·涼山州]根據(jù)有理數(shù)乘法(除法)法則可知:
①若ab>0或ab>0,則a>0,b>0或a<0,b<0;
②若ab<0或ab<0,則a>0,b<0或a<0,b>0.
根據(jù)上述知識,求不等式(x-2)(x+3)>0的解集.
解:原不等式可化為:
①x-2>0,x+3>0或②x-2
7、<0,x+3<0,
由①得,x>2,
由②得,x<-3,
∴原不等式的解集為:x<-3或x>2.
請你運用所學知識,結合上述材料解答下列問題:
(1)不等式x2-2x-3<0的解集為 .?
(2)求不等式x+41-x<0的解集(要求寫出解答過程).
【參考答案】
1.A 2.B 3.A 4.C
5.C [解析]設該村有x戶,則這批種羊中母羊有(5x+17)只,根據(jù)題意可得
5x+17-7(x-1)>0,5x+17-7(x-1)<3,解得10.5
8、析]解不等式2x+a≤1得:x≤1-a2,不等式有兩個正整數(shù)解,一定是1和2,根據(jù)題意得:2≤1-a2<3,解得:-5a-4無解,∴a-4≥3a+2,解得a≤-3.故選A.
8.1x,①1-2x≥x+72,②
解①得,x>-2,解②得,x≤-1,
∴不等式組的解集為-2
9、際購買了(x+1)個,
依題意得:10(x+1)×0.85=10x-17.解得x=17.
答:小明原計劃購買文具袋17個.
(2)設小明可購買鋼筆y支,則購買簽字筆(50-y)支,
依題意得:[8y+6(50-y)]×80%≤400-10×18×0.85.
解得y≤4.375,即y最大值=4.
答:小明最多可購買鋼筆4支.
14.解:(1)設A型汽車每輛的價格為x萬元,B型汽車每輛的價格為y萬元,
依題意,得:4x+7y=310,10x+15y=700,解得x=25,y=30,
答:A型汽車每輛的價格為25萬元,B型汽車每輛的價格為30萬元.
(2)設購買A型汽車m輛,則購
10、買B型汽車(10-m)輛,根據(jù)題意得:m<10-m,25m+30(10-m)≤285,
解得:3≤m<5,
∵m是整數(shù),∴m=3或4,
當m=3時,該方案所需費用為:25×3+30×7=285(萬元);
當m=4時,該方案所需費用為:25×4+30×6=280(萬元).
答:最省的方案是購買A型汽車4輛,購買B型汽車6輛,該方案所需費用為280萬元.
15.A [解析]第一部分:解一元一次不等式組x3-2≤14(x-7),①6x-2a>5(1-x),②
解不等式①,得:x≤3,
解不等式②,得:x>5+2a11.
因為有且僅有三個整數(shù)解,
所以三個整數(shù)解分別為:3,2,1.
11、
所以5+2a11的范圍為0≤5+2a11<1,
解得-2.5≤a<3.
第二部分:求分式方程1-2yy-1-a1-y=-3的解,得y=2-a,
根據(jù)分式方程的解為正數(shù)和分式方程的分母不能為零,得y>0,y≠1,即2-a>0,2-a≠1,
解得:a<2且a≠1.
第三部分:根據(jù)第一部分a的范圍和第二部分a的范圍,找出a的公共范圍:
-2.5≤a<2且a≠1,
所以滿足條件的整數(shù)a為-2,-1,0.
它們的和為:-2-1+0=-3.
故選A.
16.解:(1)-10,x+1<0或②x-3<0,x+1>0,
由①得不等式組無解;由②得-10,1-x<0或②x+4<0,1-x>0,
由①得x>1;由②得x<-4,
∴原不等式的解集為x>1或x<-4.
7