墻壁清理機器人
《墻壁清理機器人》由會員分享,可在線閱讀,更多相關《墻壁清理機器人(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 墻壁清理機器人:角落清理的移動裝置的方案 T.Miyake,H.Ishihara 著 黃昌顯 譯 摘要:本次研究的目的是為了開發(fā)一種用于清洗一個大玻璃窗(如清洗一個展覽窗)的機器人。為了使此機器人能用于現(xiàn)實當中,需要以下幾個要求: 1. 能夠清洗窗戶的角落,因為污垢經(jīng)常殘留在那里。 2. 能夠連續(xù)地清掃玻璃窗,防止條紋圖案留在玻璃窗上。 該機械裝置的關鍵是圍繞其他部分移動部件的旋轉和連續(xù)的運動能達到上述的要求。前者使得機器人在窗戶的角落可以改變方向,以保持其位置和角度的適中。后者對于預防在窗戶玻璃上留下條紋圖案是必須的。我們設計通過兩個輪子的運動達到連續(xù)的運動以及
2、通過利用吸盤吸附在玻璃窗上。 機器人原型的尺寸大約是300毫米×300毫米×100毫米,沒有電池的時候重量約為兩公斤。這個原型在垂直光滑的窗戶玻璃上的基本實驗結果是,垂直方向向上的移動速度為0.08米/秒, 垂直向下的移動速度是0.14米/秒,水平方向移動速度為0.11米/秒。 這篇文章的第一章提到了研究的背景和此次研究的目標,以及介紹墻上清理機器人的概念。第二章討論了附著和運行的機械裝置。第三章在實驗的基礎上論述了其基本特性。最后,在第四章當中討論了未來的工程與難題。 關鍵詞:移動機械機構, 機器人 1 前言 最近,我們對于建筑物外部表面的自動清洗有許多要求。一些特制的窗口清洗機已
3、經(jīng)被安裝應用于建筑物保養(yǎng)領域的實際當中。然而,從一開始它們幾乎都是安裝在建筑物當中,而且他們需要非常昂貴的費用。因此,在建筑維修領域當中,要求體積小、重量輕、便攜式窗口清潔機器人也正在發(fā)展。 清潔公司對窗戶清潔機器人需求的現(xiàn)場調查研究結果表明,為了使窗戶清潔機器人用于實際當中,需要滿足以下幾點: 1. 為了便于攜帶,它的尺寸應當小,重量應當輕。 2. 能夠清潔窗戶的角落,因為那里往往遺留污垢。 3. 能連續(xù)地清掃玻璃窗,防止條紋圖案留在玻璃窗上。 該移動裝置的選擇必須滿足這些要求,尤其是后兩項。這個移動裝置是由粘吸機構、移動機構和方向改變機構組合而成。 各種各樣運動機制的爬
4、墻機器人的研究已經(jīng)被報道。然而他們不完全符合以上三點。例如,通過用腳行走的爬壁機器人不能實現(xiàn)連續(xù)行走,而且它的轉彎能力低。 我們專注于應用于單一窗口的清潔機器人。為了能再任何窗口上使用,跨越窗框或者窗口鏈接處顯然是必要的,但是正如一個展覽窗戶的單窗玻璃上也可作為一種重要的應用。 根據(jù)上述考慮,我們采用兩個輪子的運動和一個粘附的吸盤機構,本文主要論述了這個機構和功能尤其,在清洗角落窗口的功能。 首先要求按以下說明來設計窗戶保潔機器人。 —體重:5公斤,包括電池和洗滌水, —大小:300毫米×300毫米×100毫米。 這些也是按保潔公司調查結果的要求定義的。 本文提出的體積小、重量輕
5、、便攜式窗戶清潔機器人的名字叫墻壁清理器, 正如前面提到的,它被設計來滿足市場的需求。 該文章提議這個尺寸小,重量輕,便于攜帶的,為了滿足上述市場要求而設計窗口清潔機器人取名叫WallWalker。WallWalker附著在玻璃窗上,在大玻璃窗上一邊運動一邊清洗。 本文章論述了清潔器運動機械裝置的效果。第二章討論了機器人的運動裝置,并插圖說明了樣機測試所提出的移動機理。第三章在試驗的基礎上論述了其基本的性能。 圖1. 墻上一個小型窗口清潔機器人 2 移動裝置 各種不同的運動裝置的窗戶清潔機器人的研究成果曾被報告過。然而他們不滿足我們基于以上市場需求而規(guī)定技術條件。例如,通過用腳行走的
6、爬壁機器人不能實現(xiàn)連續(xù)行走,而且它的轉彎能力低。爬壁機器人爬行機制允許連續(xù)運動,但其旋轉能力和其行走能力一樣低,甚至低于行走能力。爬行機制的窗戶清潔機器人已經(jīng)被Shraft等人發(fā)展成熟 (尺寸:440×400×180毫米,重量:6.5公斤,最高速度2厘米/秒)。它為了改變行駛方向,必須要自行的爬行和旋轉。該機制需要強勁的吸附力量去支持整個系統(tǒng)的在垂直面同時抬起移動裝置,這也需要很長時間來完成這個改變方向的過程。 行走和爬行機制都需要復雜的結構,因此很難減輕重量和縮小尺寸。 根據(jù)這些考慮,我們采用兩個輪子的運動和一個粘附的吸盤機構。圖二顯示W(wǎng)allWalker的概念結構,其中包括兩個驅動輪、
7、一個吸盤放入機器人的中心,一個空氣調節(jié)器、一個小真空泵、 圖2. 小型窗口的清潔機器人概觀 一些電子電路和打掃設備。本章的內容涉及具體的結構測試的原型設計和機制。 2.1 運行機構 Wallwalker通過兩輪與打孔表面吸盤在窗玻璃上移動。該機械裝置最重要的是吸盤的摩擦系數(shù)和輪胎能緊緊貼在玻璃表面,例如輪胎和窗口表面之間的高摩擦力能傳遞力矩。吸盤和窗戶表面之間的低摩擦力,它實現(xiàn)整機保持在窗子上移動機器人。我們選了聚四氟乙烯作為吸盤的表面材料,和硅橡膠作為輪胎的材料。 2.2 轉向裝置 轉向裝置是一個清潔窗戶角落的關鍵。圖3鏡頭展示了機器人的在角落改變它的運動方向的場景。圖3(a
8、)顯示了一個平常的轉彎方式如汽車的轉彎。在這個情況,由于機器人改變方向如同描繪一條弧線一樣,所以它達不到窗口的角落盡頭。這樣的機器人需要如下的復雜過程, 去達到窗戶的角落:第一,機器人進入一個角落,其次它移動回原來的距離,然后它像畫弧線一樣改變方向。如果機器人可以如圖3(b)所示在角落盡頭改變它的方向,機器人就能夠輕易快速地清潔每一個角落。圓形機器人很容易可以在墻角轉彎,但它不能達到角落盡頭。另一方面,一個方形的機器人可以清潔角落,但從不將自己轉向。 為了得到如圖3(b)所示的改變方向的功能,如圖2所示我們設計了一個可轉動連接在中心軸處的移動平臺和清洗部分的機構。所推薦的機械裝置由一個支持的
9、部分,一個清潔部分和移動部分組成。支持的部分是由被聚四氟乙烯覆蓋的吸盤和真空泵構成。清潔的部分固定在支持的部分上。移動的部分用兩輪驅動機構,該部分與支持部分的中心軸用懸架彈簧連接。 (a)常規(guī)的傳動策略 (b)新的轉向策略,這樣可以清潔到角落 圖3. 在一個窗口角落的轉向機構 2.3 懸掛的裝置 用足夠產生摩擦力來移動機器本身的力按輪胎使其貼緊支持表面是非常重要的。因為吸盤在真空的條件下改變其自身形狀,如同真空狀態(tài),致使其最初無法計算機器人靠在附著表面的姿態(tài)。也就是說,輪胎推在附著平面上的力必須對附著力是可
10、調節(jié)的。 WallWalker的彈簧懸架被看作為調節(jié)機構。他們被安裝在移動部分和支撐部分之間,而且能夠使輪胎以一個合適的力接觸附著面并使之產生摩擦。 2.4 移動裝置的原型 圖4的照片展示了被推薦的用于實驗的原型機轉動裝置圖片。這個原型的尺寸大約是300毫米×300毫米×100毫米,其重量不含電池大約兩公斤。其底盤是由正方形的鋁合金制成,其內部是被掏空,用來放能夠改變移動方向的旋轉移動部分。這包含兩個直流電機、懸掛機制、真空泵(-23 千帕)和直徑是150毫米吸盤,空氣調節(jié)器和一些電子電路。這個機器人目前是通過電纜從外部控制的,其電力能源也由一個電源插排提供的。
11、 圖4. 成熟的樣機 3 實驗結果 起初,基本性質已經(jīng)在垂直光滑的玻璃窗上測試過了。實驗結果表明,上升方向的移動速度是0.08米/秒,下降方向是0.14米/秒和水平方向0.11米/秒(圖5)。同時,機器人在移動過程中能夠保持身體在窗戶上的穩(wěn)定移動而不跌倒。這些結果證實了其基本性能滿足基于現(xiàn)場調查所定義的性能規(guī)范。 接下來,旋轉原型機在窗戶角落里的工作通過實驗。圖6展示了原型機利用論文所提到的轉向機構在拐角處轉彎的連續(xù)照片。正如這些照片所顯示的那樣,我們已經(jīng)證實了該模型可以順利改變它的移動方向。 (a)原型機爬窗戶
12、 (b)原型機的背面 圖5. 原型機的機動性測量 圖6. 原型機在窗戶角落里的旋轉測試 4 結論 提議中的WallWalker提供了在垂直窗玻璃上的連續(xù)移動以及在窗戶拐角處改變自身運動方向方案,該機器人專為清掃窗戶死角而設計的。為了驗證上述原型機的基本性質能,我們對其進行了改進。這些結果證明了該原型機滿足了第一章中所提到的基本要求。 下一步將是對設施的控制系統(tǒng)及清洗單位的發(fā)展。傳感器,例如傳感器的姿態(tài),陀螺傳感器等,將被安裝好以及控制方案都將會得到發(fā)展。最后將對清潔單元的清潔能力進行測試。 致謝
13、這項研究是由Nankai-Ikueikai和Takamatsu, Japan基金會支持的。在此我們非常感謝他們的支持和鼓勵。 . WallWalker: Proposal of Locomotion Mechanism Cleaning Even at the Corner T. Miyake1 2 and H.Ishihara 1 1 Kagawa Univ. Japan 2 MIRAIKIKAI Inc. Japan
14、 Abstract. The purpose of this research is to develop the window cleaning robot for cleaning a single large windowpane such as a show window. It requires the following demands to apply the window cleaning robot for the practical use: 1. Clean the corner of window because fouling is left there ofte
15、n. 2. Sweep the windowpane continuously to prevent making striped patterns on windowpane. The keys of mechanisms are the rotation ability of the mobile part around the other parts and the continuous locomotion in order to achieve the above points. The former enables the robot to change the directi
16、on with keeping its position and attitude at the corner of window. The latter is necessary for preventing leaving the striped pattern on the windowpane. We designed the continuous motion using two-wheel locomotion and adhering on the windowpane using a suction cup. The size of prototype is about 30
17、0mm × 300mm × 100mm and its weight is about 2 kg without batteries. As the results of basic experiments of the prototype on a vertical smooth window glass, traveling velocity of going up direction was 0.08 m/s, traveling velocity of going down direction was 0.14 m/s and horizontal direction was 0.11
18、 m/s. In this paper the 1st chapter mentions background and objectives of this research and also introduces the concept of WallWalker. The 2nd chapter discusses the adhering and moving mechanism. The 3rd chapter illustrates its basic properties based on the experiments. Finally, problems and future
19、 works are discussed in the4th chapter. 1 Introduction Recently, we have had many requests for the automatic cleaning of outside surface of buildings. Some customized window cleaning machines have already been installed into the practical use in the field of building maintenance.However, almost of
20、 them are mounted on the building from the beginning and they needs very expensive costs. Therefore, requirements for small, lightweight and portable window cleaning robot are also growing in the field of building maintenance. As the results of surveying the requirements for the window cleaning ro
21、bot by the field research with the cleaning companies, the following points are necessary for providing the window cleaning robot for practical use: 1. It should be small size and lightweight for carried by one person to everywhere. 2. Clean the corner of window because fouling is left there often
22、. 3. Sweep the windowpane continuously to prevent making striped pattern on a windowpane. The locomotion mechanism must be chosen to satisfy these demands, especially later two subjects. Here locomotion mechanism means the combination of adhering mechanism, traveling mechanism and a mechanism for
23、changing traveling direction. Various researches of locomotion mechanisms on wall climbing robots have been reported [1–5]. However they do not adapt to above three points completely.For example, climbing robot by legged-wall walking can not realize the continuous movement, and also its turn-abilit
24、y is low [6]. We focused on the application of the window cleaning robot on a single windowpane. It is apparently necessary to cross over the window frame or joint line to use it at any window, but the single windowpanes like as a show window also exist as an important application. According to su
25、ch considerations, we adopted the two-wheel locomotion mechanism with adhering by a suction cup. This paper mainly deals with this mechanism and functions specialized in cleaning the corner of window. First requirement brought the following specifications for designing the window cleaning robot. –
26、 Weight: 5 kg, including the weight of battery and washing water, – Size: 300mm × 300mm × 100 mm. These are also defined by the results of surveying the demands from the cleaning companies. This paper proposes the small, light and portable window cleaning robot named WallWalker, which are designe
27、d to satisfy the market demands as mentioned above. Figure 1 is the rendering at a scene of practical use of WallWalker. The WallWalker is adhering on a windowpane and cleaning as moving on large windows. This paper discusses the effectiveness of proposed locomotion mechanism. The 2nd chapter discu
28、sses the locomotion mechanisms and illustrates the prototype for testing the proposed locomotion mechanism. The 3rd chapter illustrates its basic properties based on the experiments. Fig. 1. Small-size window cleaning robot on a window 2 Locomotion Mechanism Various researches of locomotion me
29、chanisms on the window clecaning robots have been reported. However they do not meet our specifications defined based on the market demands above-mentioned. For example, climbing robot by legged-walk cannot realize the continuous movement, and also its turn-ability is low [6]. Climbing robot using c
30、rawler mechanism allows continuous movement, but the rotatability is as low as or lower than the legged walk [7]. Window cleaning robot by crawler mechanism had been developed (Size: 440×400×180mm Weight: 6.5 kg maximum speed 2 cm/sec) by Shraft et al. [8]. It must bring its own crawler up from the
31、adhering surface and rotate it in order to change its traveling direction. This mechanism needs strong adhering force to hold the whole system on the vertical plane with lifting the mobile mechanism, and also it takes a long time to finish the process of changing its front. Both of Legged-Walk and
32、Crawler mechanism need the complicated structures, and therefore it is difficult to lighten and downsize it. According to such considerations, we adopted the two-wheel locomotion mechanism with adhering by suction cup. Figure 2 shows conceptual structure of WallWalker, which includes two driving wh
33、eels, a suction cup put in the center of robot, an air regulator, a small vacuum pump, some electronic circuits and some cleaning units. This chapter deals with the details of structures and the prototype designed for testing the proposed mechanism. 2.1 Traveling Mechanism WallWalker moves on wind
34、owpane by two wheels with holing the body on the surface using a suction cup. The most important point in the mechanism is Fig. 2. Overview of small-size window cleaning robot the friction coefficient of suction cup and tire against the adhering surface, e.g. high friction between the tire and t
35、he surface of window transmits the torque, and low friction between the suction cup and the surface of window. It achieves to move the robot with holding the body on the window. We selected PTFE (Polytetrafluoroethylene) for the materials of surface of a suction cup, and silicon rubber for the mater
36、ial of tires. 2.2 Turning Mechanism Turning mechanism is a key to clean even at the corner of window. Figure 3 shows the scenes that the robot changes its traveling direction at the corner. Figure 3(a) shows a usual turning way like as turning of motorcars. In this case, since the robot changes a
37、direction as tracing an arc, it can not reach the end of corner of window. It needs the complicated process as follows to clean the corner by such robot: first, the robot goes into a corner, next it moves back the distance to turn, then it changes its direction as tracing an arc. In case that the r
38、obot can change its direction at the end of corner as shown in Fig. 3(b), the robot can clean a corner easily and rapidly. Round-shape robot is easily able to turn at the corner, but it unable to reach the end of corner. On the other hand, a quadrangular robot can clean to the end of corner, but nev
39、er turn itself there. To get a function to change direction as shown in Fig. 3(b), we designed the mechanism that a mobile unit and a cleaning part are rotatably connected at the center shaft as shown in Fig. 2. Proposed mechanism consists of an adhering part, a cleaning part and a mobile part. The
40、 adhering part is constructed of a suction cup covered with PTFE and a vacuum pump. The (a)Conventional turning strategy (b)Novel turning strategy, which enables to clean a corner Fig. 3. Turning mechanism at a window Corner cleaning part is fixed to the adhering part. The mobile part uses t
41、wo-wheel driving mechanism and is connected to the center shaft of the adhering part with suspension springs. 2.3 Suspension Mechanism It is very important to press the tires on the adhering surface with the force enough to generate the friction to move itself. Because the suction cup deforms its
42、own shape by the condition of vacuum such as a vacuum pressure, it is impossible to calculate the posture of robot against the adhering surface initially. That is, the force that the tire is pushed on the adhering plane must be adjustable to the adhering force. WallWalker is introduced suspension
43、springs into as an adjusting mechanism. They are placed between the mobile part and the adhering part, and enable to touch the tires on the adhering plane with a suitable force for the generating the friction. 2.4 Prototype of Locomotion Mechanism Figure 4 shows the photograph of prototype develop
44、ed to test the proposed turning mechanism. The size of prototype is about 300mm × 300mm × 100mm and its weight is about 2 kg without batteries. The chassis that is made of aluminum alloy is formed square, and its inner area is hollowed to rotate mobile part at changing traveling direction. This cont
45、ains two DC motors, suspension mechanism, a vacuum pump (?23 KPa) a suction cup which diameter is 150 mm, an air regulator and some electronic circuits. This robot is currently controlled from outside via cables and electric energy is also supplied by a power strip. Fig. 4. Developed prototype 3
46、 Experimental Results At first the basic properties on a vertical smooth window glass have been tested. As the experimental results, traveling speed of going up direction was 0.08 m/s, one of going down direction was 0.14 m/s and horizontal direction was 0.11m/s (Fig. 5). Also, the robot kept its b
47、ody on the window stably and did not fall down during moving. These results proved its basic performance satisfies the specifications defined based on the field surveying. Next, rotatability of prototype at the corner of window was confirmed by the experiment. Figure 6 shows sequential photographs
48、 when the prototype turns at the corner using turning mechanism proposed in this paper. As shown by these photographs, it was verified that the prototype can change its traveling direction at rights smoothly. (a) Prototype is climbing up a window (b) Back side of prototype Fig. 5. Mobility m
49、easuring of prototype Fig. 6. Test of rotatability of prototype at the corner of window 4 Conclusion Proposed WallWalker, which provides the continuous motion on the vertical windowpane and rotatability that the robot can change its traveling direction at the corner of window, was designed fo
50、r cleaning the end of corner of window. In order to verify the basic properties about above abilities, the prototype was developed. Those results proved that the prototype fill the basic requirements mentioned in 1st chapter. As the next development, the installations of control system and cleaning
51、 nit are planed. Sensors such as the posture sensor, e.g. gyro sensor, will be counted and control scheme will be developed. Finally, the cleaning be tested with some cleaning units. Acknowledgements This research was supported by Foundation of Nankai-Ikueikai, Takamatsu, Japan. We greatly appreciate their support and encouragement.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點美食推薦
- XX國有企業(yè)黨委書記個人述責述廉報告及2025年重點工作計劃
- 世界濕地日濕地的含義及價值
- 20XX年春節(jié)節(jié)后復工安全生產培訓人到場心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點節(jié)后常見的八大危險
- 廈門城市旅游介紹廈門景點介紹廈門美食展示
- 節(jié)后開工第一課復工復產十注意節(jié)后復工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓
- 深圳城市旅游介紹景點推薦美食探索
- 節(jié)后復工安全生產培訓勿忘安全本心人人講安全個個會應急
- 預防性維修管理
- 常見閥門類型及特點
- 設備預防性維修
- 2.乳化液泵工理論考試試題含答案