2020版高中數(shù)學 第二章 圓錐曲線與方程 微專題突破二 離心率的求法課件 新人教B版選修1 -1.ppt
《2020版高中數(shù)學 第二章 圓錐曲線與方程 微專題突破二 離心率的求法課件 新人教B版選修1 -1.ppt》由會員分享,可在線閱讀,更多相關《2020版高中數(shù)學 第二章 圓錐曲線與方程 微專題突破二 離心率的求法課件 新人教B版選修1 -1.ppt(41頁珍藏版)》請在裝配圖網(wǎng)上搜索。
專題突破二離心率的求法,第二章圓錐曲線與方程,一、以漸近線為指向求離心率例1已知雙曲線兩漸近線的夾角為60,則雙曲線的離心率為________.,思維切入雙曲線的兩漸近線有兩種情況,焦點位置也有兩種情況,分別討論即可.,解析由題意知,雙曲線的漸近線存在兩種情況.當雙曲線的焦點在x軸上時,若其中一條漸近線的傾斜角為60,如圖1所示;若其中一條漸近線的傾斜角為30,如圖2所示.,,,,跟蹤訓練1中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,-2),則它的離心率為,√,二、以焦點三角形為指向求離心率例2如圖,F(xiàn)1和F2分別是雙曲線(a>0,b>0)的兩個焦點,A和B是以O為圓心,|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則雙曲線的離心率為________.,思維切入連接AF1,在△F1AF2中利用雙曲線的定義可求解.,解析方法一如圖,連接AF1,由△F2AB是等邊三角形,知∠AF2F1=30.易知△AF1F2為直角三角形,,方法二如圖,連接AF1,易得∠F1AF2=90,β=∠F1F2A=30,α=∠F2F1A=60,,點評涉及到焦點三角形的題目往往利用圓錐曲線的定義求得的值.,√,解析方法一如圖,在Rt△PF2F1中,∠PF1F2=30,|F1F2|=2c,,∵|PF1|+|PF2|=2a,,方法二(特殊值法):在Rt△PF2F1中,令|PF2|=1,∵∠PF1F2=30,,三、尋求齊次方程求離心率例3已知雙曲線E:(a>0,b>0),若矩形ABCD的四個頂點在E上,AB,CD的中點為E的兩個焦點,且2|AB|=3|BC|,則E的離心率是____.,思維切入通過2|AB|=3|BC|,得到a,b,c的關系式,再由b2=c2-a2,得到a和c的關系式,同時除以a2,即可得到關于e的一元二次方程,求得e.,2,|BC|=2c.又2|AB|=3|BC|,,即2b2=3ac,∴2(c2-a2)=3ac,兩邊同除以a2并整理得2e2-3e-2=0,解得e=2(負值舍去).,點評求圓錐曲線的離心率,就是求a和c的值或a和c的關系,然后根據(jù)離心率的定義求得.但在多數(shù)情況下,由于受到題目已知條件的限制,很難或不可能求出a和c的值,只能將條件整理成關于a和c的關系式,進而求得的值,其關鍵是善于利用定義以及圖形中的幾何關系來建立關于參數(shù)a,b,c的關系式,結合c2=a2+b2,化簡為參數(shù)a,c的關系式進行求解.,跟蹤訓練3已知橢圓(a>b>0),A,B分別為橢圓的左頂點和上頂點,F(xiàn)為右焦點,且AB⊥BF,則橢圓的離心率為_______.,由AB⊥BF得|AB|2+|BF|2=|AF|2,將b2=a2-c2代入,得a2-ac-c2=0,,四、利用直線與圓錐曲線的位置關系求離心率的取值范圍,[2,+∞),故離心率e的取值范圍是[2,+∞).,√,由于直線與雙曲線相交于兩個不同的點,則1-a2≠0?a2≠1,且此時Δ=4a2(2-a2)>0?a2<2,所以a2∈(0,1)∪(1,2).,五、利用焦半徑的性質求離心率的取值范圍,又因為點P在橢圓上,所以|PF1|+|PF2|=2a.,又a-c<|PF2|0,b>0)的右焦點作一條與其漸近線平行的直線,交C于點P.若點P的橫坐標為2a,則C的離心率為________.,1,2,3,4,5,6,7,,1,2,3,4,5,6,7,,6.已知雙曲線(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點M在雙曲線的左支上,且|MF2|=7|MF1|,則此雙曲線的離心率的最大值為____.,1,2,3,4,5,解析因為|MF2|=7|MF1|,所以|MF2|-|MF1|=6|MF1|,即2a=6|MF1|≥6(c-a),故8a≥6c,,當且僅當M為雙曲線的左頂點時,等號成立.,6,7,,7.已知橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點P在橢圓C上,線段PF2與圓:x2+y2=b2相切于點Q,若Q是線段PF2的中點,e為C的離心率,則的最小值是________.,1,2,3,4,5,6,7,,解析如圖,連接PF1,OQ,由OQ為△PF1F2的中位線,,,由圓x2+y2=b2,可得|OQ|=b,則|PF1|=2b.由橢圓的定義可得|PF1|+|PF2|=2a,即|PF2|=2a-2b.又OQ⊥PF2,所以PF1⊥PF2,即(2b)2+(2a-2b)2=(2c)2,即b2+a2-2ab+b2=c2=a2-b2,,1,2,3,4,5,6,7,,,1,2,3,4,5,6,7,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2020版高中數(shù)學 第二章 圓錐曲線與方程 微專題突破二 離心率的求法課件 新人教B版選修1 -1 2020 高中數(shù)學 第二 圓錐曲線 方程 專題 突破 離心 求法 課件 新人 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.szxfmmzy.com/p-3201323.html