九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

機械專業(yè)外文文獻翻譯-外文翻譯--包絡(luò)法的資產(chǎn)負債

  • 資源ID:16890       資源大?。?span id="24d9guoke414" class="font-tahoma">262.77KB        全文頁數(shù):12頁
  • 資源格式: DOC        下載積分:5積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要5積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

機械專業(yè)外文文獻翻譯-外文翻譯--包絡(luò)法的資產(chǎn)負債

<p>英文原文 &nbsp;A 998, as or as at in to as is Σ is &nbsp;of is in , &nbsp;= &nbsp;z2/r w z of In we r1 &nbsp;= p is &nbsp; to of he a or r1(t, θ) a or is to be A of is in r2(t, θ, τ ), t is a &nbsp; r1(t, θ)=[ x1,y1,= &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(A,?????? ??????? 0,, 111 &nbsp;= ???????????????? 0,c o ss in,s o s 0101011 ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(? ?0,,0,, 01010111 ??????? ??????? ??? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(? ? ? ??????????? c i n,s i nc ,),,( 1111122222 ? &nbsp;? ?202020202 ,s in,s o s ??? ???(? ? ? ?2020202022222 ,s i nc o s,s i ns i n,, ???? ??????? &nbsp;? ????????????? s i n)(c os,c s i n,c i n 121211 &nbsp; (r1 0222 ?????????? ????? ?? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (a of If a &nbsp;is by t, be to , a of t, as a to a , of t . in a τ is of on &nbsp; of of to of a is an be in a of is 0211111 ?????????? ???????????????? ????? ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( &nbsp;of ? ? ?????? ????????? 111211 c &nbsp; 0)c o t( 12111 ??????????????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (is to of of a is It be of on a as in of or no as in as In do of to a is as an of a a is as a , , of p1 p2 of is to &nbsp;= ψψis by of in x to to of be so is to of Σ = ψ1+ ψ2. a be to of C = of be of or of or on of . be by t, t t A of &nbsp;is to ?t y1?t. A &nbsp;is of &nbsp;θ be to z1 of &nbsp; &nbsp;be z2 be to &nbsp; &nbsp; ?y2 be A of be (i) &nbsp;= 0, of a i = p2/p1 is be of a it &nbsp;If a or is it is to 0. is a a be (of is of of a is of be &nbsp;B 1983, a of &nbsp;in a &nbsp;by &nbsp;of is dA at v. an or of of &nbsp;in ?????????? ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (it be of &nbsp;in &nbsp;is – &nbsp;of m/??? in of in ????????t? dV is a &nbsp; &nbsp;of a &nbsp; in it a in &nbsp;? is be by a &nbsp;? ??? ?? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(be by a ? ?A &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(? ? ?? ? ???????????? ???????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( is a to a &nbsp;m &nbsp;m v is to w, ? ? ??????????? ?? ?? ? ??????? V &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (If is at to &nbsp;, &nbsp;m &nbsp;m , of in is a is ? ? ? ?? ????? ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (?? ???????? ??????????? ?? ????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (? ? ??????? ????????? ?? ? ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (If in if it v = 0 ? ?V ? ????????? ?? ??? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(? ? ?? ??????????? ?????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(to ? ? ? ?? ???????????? ?? ????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(As a of &nbsp;is by q &nbsp;be to or or at is by a is by a ? ? ??? ? ?????????????? ?? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (q be or of &nbsp;? ? ? ?? ?????A ??? &nbsp;? ? ? ? 0??????? ??????? ?? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(? ? ? ? 0??????? ??? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (is of ??? . &nbsp; = 1, ? ? 0?????? ??it ? ? ? ? 0??????????? ????? ???? &nbsp;? ? ?????? ????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (? &nbsp;is or of &nbsp;. is of As &nbsp; = 1 to ? &nbsp;= u to ? &nbsp;= e, e is to ? &nbsp;= s, to so If &nbsp;or be a be ??????? ????????? ?()( ?????(at to of ? ? ????????????????????? ?????? )()( ???? &nbsp; &nbsp; &nbsp; (in (of ) = () ? () +() &nbsp;中文譯文 &nbsp;A 包絡(luò)法的資產(chǎn)負債 &nbsp;螺桿壓縮機轉(zhuǎn)子 998 年之后,被視為非平行不相交的螺旋齒輪,或在圖的交叉軸。 &nbsp; &nbsp;示于圖。 &nbsp; Σ是繞 X 軸的旋轉(zhuǎn)角度。的轉(zhuǎn)子軸的旋轉(zhuǎn),在其軸承是天然的轉(zhuǎn)子運動。雖然主旋翼旋轉(zhuǎn)通過角度θ &nbsp;,閘轉(zhuǎn)子的旋轉(zhuǎn)通過角度τ &nbsp;= &nbsp; = z2/,其中 外,我們定義外部和內(nèi)部的轉(zhuǎn)子半徑: &nbsp; 子軸之間的距離是 C = &nbsp; p 是在給定的單元轉(zhuǎn)子旋轉(zhuǎn)角的轉(zhuǎn)子引線。標 1和 2分別涉及 的主要和閘轉(zhuǎn)子。 &nbsp;圖。 &nbsp;標系與非平行交錯軸斜齒輪 &nbsp;與一個給定的,或產(chǎn)生表面 &nbsp;T, &nbsp;θ &nbsp;)的嚙合,或產(chǎn)生的表面以確定,該程序開始。一個集合中仍將產(chǎn)生表面參數(shù)形式: &nbsp;T, &nbsp;θ, &nbsp;τ) &nbsp;,其中 &nbsp;θ和τ是運動參數(shù)。 &nbsp;包絡(luò)面 決定: &nbsp;r1(t, θ )=[ x1,y1,= &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (A,?????? ??????? 0,, 111 ???????????????? 0,c o ss in,s o s 0101011 ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (? ?0,,0,, 01010111 ??????? ??????? ??? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (? ? ? ??????????? c i n,s i nc ,),,( 1111122222 ? &nbsp;? ?202020202 ,s in,s o s ??? ???(? ? ? ?2020202022222 ,s i nc o s,s i ns i n,, ???? ??????? &nbsp;? ????????????? s i n)(c os,c s i n,c i n 121211 &nbsp; (包絡(luò)方程,它決定了嚙合表面之間的 0222 ?????????? ????? ?? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (連同這些表面方程,完成方程系統(tǒng)。如果生成的表面 1 被定義的參數(shù) t ,系統(tǒng)可用于計算另一個參數(shù)θ &nbsp;,現(xiàn)在 t 的函數(shù),作為一個嚙合條件來定義一個生成的表面 2,現(xiàn)在, &nbsp;包絡(luò)方程的交叉 乘積表示的表面法線和 ?R ?τ 2是兩個表面 1和 2 ,它們一起構(gòu)成了這兩個表面的接觸,共同的切點上的單點的相對滑動速度。由于平等到零的一個標量三重積下施加的坐標系,并是一個不變的屬性,因為相對速度,可以同時在兩個坐標系統(tǒng)的嚙合條件被定義為,以方便的形式表示: &nbsp;0211111 ??????????????????????????????????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( &nbsp;插入前面的表達式到系統(tǒng)條件給: &nbsp;? ? ???????????????111211 c 0)c o t( 12111 ??????????????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(這是適用于這里的條件交叉均勻鉛與非平行交錯軸斜齒輪的嚙合動作。的方法構(gòu)成的齒輪的生成過程,這是普遍適用的。它可用于合成的目的,這是有效地與平行軸的螺旋齒輪的螺桿壓縮機轉(zhuǎn)子。非平行和非相交軸越過轉(zhuǎn)子制造的形成工具的螺旋齒輪上具有均勻的引線,在滾齒的情況下,或與如銑削和磨削形成不含鉛。轉(zhuǎn)子檢查模板平面轉(zhuǎn)子滾刀一樣。在所有這些情況下,刀具軸不相交的轉(zhuǎn)子軸。 &nbsp;因此,注意到提出的包絡(luò)的方法的應(yīng)用程序,以產(chǎn)生交 叉的螺旋齒輪的嚙合條件。螺桿轉(zhuǎn)子齒輪,然后給出作為其使用一個基本例子的,而形成滾齒機工具的過程作為一個復雜的情況下給出。 &nbsp;軸角Σ &nbsp;,中心距 C ,和單元信息的兩個交叉的螺旋齒輪, &nbsp;錯軸斜齒輪嚙合仍保存著兩個齒條正截面具有相同的配置文件,并在機架上的螺旋角與軸角Σ = ψ &nbsp;ψ 這是通過在 x 方向上的齒條迫使他們相應(yīng)地調(diào)整到適當?shù)臋C架螺旋角的隱式移位。這當然也包括特殊情況下,這樣的齒輪可以是定向的,使得在軸角的齒輪的螺旋角的總和是等于: &nbsp;Σ &nbsp;= ψ 1+ ψ 2 。此外,中心距 離可以等于齒輪節(jié)距半徑的總和:21 ? &nbsp;成對的交叉斜齒輪可以與兩個螺旋角相同的符號或每個符號相反,左或右旋的,取決于其鉛和軸角Σ上的組合。 &nbsp;嚙合條件,可以解決只能通過數(shù)值方法。對于給定的參數(shù) t ,坐標 &nbsp; 所述 ?猜到參數(shù)θ的值,然后用于計算 &nbsp;?T?所述 ? ? ?修訂的θ值,然后推導和過程反復進行,直到連續(xù)兩個值之間的差異變得足夠小。 &nbsp;對于給定的橫向坐標和齒輪 1的檔案中的衍生物,θ可以用來 計算 &nbsp;輪 2 的螺旋面的表面,然后可以被計算出來。坐標 然后,可以使用計算τ和最后,其橫向的更新點坐標 2,可以得到的。 &nbsp;從這樣的分析,可以發(fā)現(xiàn)多宗個案。 &nbsp;(i) &nbsp; &nbsp; 當Σ &nbsp;= 0 ,方程滿足螺桿機轉(zhuǎn)子和也具有平行軸的螺旋齒輪的嚙合狀態(tài)。對于這樣的情況下,齒輪的螺旋角的有相同的值,但符號相反的齒比 i = 1 為負。也可以應(yīng)用相同的方程的根憂思從齒輪形成的齒條。此外,它描述所形成的平面爐灶,前銑削刀具和模板控制儀器。 &nbsp;( &nbsp; &nbsp;如果光盤銑削或研磨工具被 認為形成的,它是足夠放置 &nbsp;= 0 。這是一個單一的情況下,工具自由轉(zhuǎn)動時,不影響嚙合過程。因此,反向變換不能直接獲得。 &nbsp;( &nbsp; 全部范圍的嚙合條件是必需生成形成滾齒機工具的檔案。因此,這是最復雜的性態(tài)類型的齒輪,它可以從它產(chǎn)生。 &nbsp; B 雷諾運輸定理 &nbsp;繼 &nbsp;1983年,雷諾運輸定理定義變量φ在有限的面積 行進速度 &nbsp;的變化,但不一定需要配合工程或材料物理系統(tǒng)。卷內(nèi)的時間的變量φ的變化率是 : &nbsp;?????????? ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (因此,可以得出結(jié)論,變量 φ 的變化所造成的在體積 V : &nbsp;- 變化的特定的變量φ &nbsp;= Φ &nbsp;/ 為 卷中的源(和匯) ????????t? &nbsp;- 一種空間在它的變量φ和離開它的舊的空間,引起的變化在時間上的φρφ 為對流變化。 &nbsp;可表示的第一個貢獻可以所表示的體積積分: &nbsp;? ??? ?? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (而第二個貢獻可以表示由一個曲面積分: &nbsp;??(因此: &nbsp;? ? ?? ? ???????????? ???????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( 這是雷諾運輸定理的數(shù)學表示。應(yīng)用的材料系統(tǒng)內(nèi)控制音量 有表面 速度 v ,這是相同的流體速度 w ,雷諾運輸定理讀?。?&nbsp;? ? ??????????? ?? ?? ? ??????? V &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (如果該控制量選擇在一個瞬間,以配合控制體積 &nbsp;和 曲面積分是相同的,對于 m ,然而,這些積分的時間導數(shù)是不同的,因為在接下來的時間間隔,控制體積不相符。但是,是一個術(shù)語,它的兩個時間間隔是相同的: &nbsp;? ? ? ?? ????? ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(如果被固定的坐標系中的控制量,即,如果它不移動時, v = 0 ,因此: &nbsp;?? ???????? ??????????? ??????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (或 : ? ? ???????? ????????? ?? ? ???? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(如果被固定的坐標系中的控制量,即 ,如果它不移動, v = 0和結(jié)果: &nbsp;? ?V ? ????????? ?? ??? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(因此: &nbsp;? ? ?? ??????????? ?????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(最后,高斯定理的應(yīng)用導致的常見形式: &nbsp;? ? ? ?? ???????????? ?? ????? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (如前所述,變量φ的變化所造成的來源 和以外的體積的影響。這些效應(yīng)可能是正比于系統(tǒng)的質(zhì)量或體積的,或者它們可以在系統(tǒng)表面行事。 &nbsp;由下式給出的體積積分的第一個效果,和由下式給出的表面積分的第二個效果。 &nbsp;? ? ??? ? ?????????????? ?? &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (量或張量。 &nbsp;組合的最后兩個方程給出: &nbsp;? ? ? ?? ?????A ??? &nbsp;或 &nbsp;? ? ? ? 0??????? ??????? ???(省略不可分割的跡象給出: &nbsp;? ? ? ? 0??????? ???(這是眾所周知的守恒定律形式的變量 ???? 。由于φ = 1 ,這將成為連續(xù)性方程:? ? 0?????? ? ,最后卻是: &nbsp;? ? ? ? 0??????????? ????? ????或 &nbsp;? ? ?????? ?????(是變量φ的重大或衍生工具。這個等式特別守恒定律的推導是非常方便的。如前面提到的φ = 1導致的連續(xù)性方程,φ &nbsp;= &nbsp;φ = e,其中 致了能量方程, &nbsp;φ &nbsp;= s 時,熵方程等。 &nbsp;如果的表面,其中的流體承載可變Φ進入或離開控制量,可以被識別,對流的變化可方便采寫: &nbsp;??????? ????????? ?()( ?????(其中 示變量的平均入口 /出口表面秒。這導致的守恒定律的宏觀形式: &nbsp;? ? ????????????????????? ?????? )()( ???? &nbsp; &nbsp; &nbsp;(其中規(guī)定詞: &nbsp;( &nbsp;Φ &nbsp;) = (流入Φ &nbsp;) &nbsp;- (流出Φ &nbsp;) + (源的Φ的變化率) &nbsp;</p>

注意事項

本文(機械專業(yè)外文文獻翻譯-外文翻譯--包絡(luò)法的資產(chǎn)負債)為本站會員(外****家)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!