《數(shù)學(xué)5 立體幾何 第3講 用空間向量的方法解立體幾何問題 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)5 立體幾何 第3講 用空間向量的方法解立體幾何問題 理(72頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第一部分專題強(qiáng)化突破專題強(qiáng)化突破專題五立體幾何專題五立體幾何第三講第三講用空間向量的方法解立體幾何問題用空間向量的方法解立體幾何問題(理理)1 1高 考 考 點(diǎn) 聚 焦高 考 考 點(diǎn) 聚 焦2 2核 心 知 識(shí) 整 合核 心 知 識(shí) 整 合3 3高 考 真 題 體 驗(yàn)高 考 真 題 體 驗(yàn)4 4命 題 熱 點(diǎn) 突 破命 題 熱 點(diǎn) 突 破5 5課 后 強(qiáng) 化 訓(xùn) 練課 后 強(qiáng) 化 訓(xùn) 練高考考點(diǎn)聚焦高考考點(diǎn)聚焦高考考點(diǎn)考點(diǎn)解讀利用空間向量證明平行與垂直關(guān)系1.建立空間直角坐標(biāo)系,利用向量的知識(shí)證明平行與垂直2考查向量的數(shù)量積與向量垂直的關(guān)系以及建立空間直角坐標(biāo)系的方法利用空間向量求線線角、線面
2、角、面面角以具體幾何體為命題背景,直接求角或已知角求相關(guān)量利用空間向量解決探索性問題或其他問題1.常借助空間直角坐標(biāo)系,設(shè)點(diǎn)的坐標(biāo)探求點(diǎn)的存在問題2常利用空間向量的關(guān)系,設(shè)某一個(gè)參數(shù),利用向量運(yùn)算探究平行、垂直問題 備考策略 本部分內(nèi)容在備考時(shí)應(yīng)注意以下幾個(gè)方面: (1)加強(qiáng)對(duì)空間向量概念及空間向量運(yùn)算律的理解,掌握空間向量的加、減法,數(shù)乘、數(shù)量積運(yùn)算等 (2)掌握各種角與向量之間的關(guān)系,并會(huì)應(yīng)用 (3)掌握利用向量法求線線角、線面角、二面角的方法 預(yù)測(cè)2018年命題熱點(diǎn)為: (1)二面角的求法 (2)已知二面角的大小,證明線線、線面平行或垂直 (3)給出線面的位置關(guān)系,探究滿足條件的某點(diǎn)是否
3、存在核心知識(shí)整合核心知識(shí)整合 (3)二面角 如圖(),AB,CD是二面角l的兩個(gè)半平面內(nèi)與棱l垂直的直線,則二面角的大小_ 如圖()(),n1,n2分別是二面角l的兩個(gè)半平面,的法向量,則二面角的大小滿足cos _cosn1,n2或cosn1,n2 2利用向量方法證明平行與垂直 設(shè)直線l,m的方向向量分別為a(a1,b1,c1),b(a2,b2,c2)平面,的法向量分別為(a3,b3,c3),v(a4,b4,c4) (1)線線平行 lmabakb_ (2)線線垂直 lmabab_a1ka2,b1kb2,c1kc20a1a2b1b2c1c20 (3)線面平行 laa_ (4)線面垂直 laak_
4、 (5)面面平行 vkv_ (6)面面垂直 vv_0a1a3b1b3c1c30a1ka3,b1kb3,ckc3a3ka4,b3kb4,c3kc40a3a4b3b4c3c40 1在建立空間直角坐標(biāo)系時(shí),易忽略說(shuō)明或證明建系的條件 2忽略異面直線的夾角與方向向量夾角的區(qū)別:兩條異面直線所成的角是銳角或直角,與它們的方向向量的夾角不一定相等 3不能區(qū)分二面角與兩法向量的夾角:求二面角時(shí),兩法向量的夾角有可能是二面角的補(bǔ)角,要注意從圖中分析高考真題體驗(yàn)高考真題體驗(yàn) 解析(1)證明:設(shè)AC,BD交于點(diǎn)E,連接ME, 因?yàn)镻D平面MAC,平面MAC平面PDBME, 所以PDME 因?yàn)樗倪呅蜛BCD是正方形
5、, 所以E為BD的中點(diǎn), 所以M為PB的中點(diǎn) 解析(1)因?yàn)锳PBE,ABBE,AB,AP平面ABP,ABAPA, 所以BE平面ABP 又BP平面ABP,所以BEBP 又EBC120,所以CBP30 解析(1)由已知可得AFDF,AFFE, 所以AF平面EFDC 又AF平面ABEF,故平面ABEF平面EFDC命題熱點(diǎn)突破命題熱點(diǎn)突破命題方向1利用空間向量證明平行與垂直關(guān)系 規(guī)律總結(jié) 利用空間向量證明平行與垂直的方法與步驟 (1)坐標(biāo)運(yùn)算法:一般步驟:建立空間直角坐標(biāo)系,建系時(shí),要盡可能地利用載體中的垂直關(guān)系; 建立空間圖形與空間向量之間的關(guān)系,用向量表示出問題中所涉及的點(diǎn)、直線、平面的要素;
6、通過空間向量的運(yùn)算研究平行、垂直關(guān)系; 根據(jù)運(yùn)算結(jié)果解釋相關(guān)問題 (2)基向量運(yùn)算法:一般步驟:選基向量,要盡量選用三個(gè)不共面的且夾角最好為90(其次為60或120)、模長(zhǎng)或其關(guān)系已知的向理為基向量; 將相關(guān)向量用基向量表示; 將證明問題轉(zhuǎn)化為向量的運(yùn)算; 根據(jù)運(yùn)算結(jié)果得結(jié)論命題方向2利用空間求量求空間中的角 規(guī)律總結(jié) 1利用空間向量求空間角的一般步驟 (1)建立恰當(dāng)?shù)目臻g直角坐標(biāo)系 (2)求出相關(guān)點(diǎn)的坐標(biāo),寫出相關(guān)向量的坐標(biāo) (3)結(jié)合公式進(jìn)行論證、計(jì)算 (4)轉(zhuǎn)化為幾何結(jié)論 2利用空間向量求線線角、線面角的思路 (1)異面直線所成的角,可以通過兩直線的方向向量的夾角求得,即cos |cos
7、 | (2)直線與平面所成的角主要通過直線的方向向量與平面的法向量的夾角求得,即sin |cos | 解析(1)因?yàn)锽CBD,E為CD中點(diǎn), 所以BECD 因?yàn)锳BCD,CD2AB, 所以ABDE,且ABDE,所以四邊形ABED是矩形 所以BEAD,BEAD,ABAD, 因?yàn)锳BPA,又PAADA, 所以AB平面PAD,所以CD平面PAD, 所以CDPD,且CDAD, 又因?yàn)樵谄矫鍼CD中,EFPD, 所以CDEF 因?yàn)镋FBEE,EF平面BEF,BE平面BEF, 又CDBE,所以CD平面BEF, 因?yàn)镃D平面PCD,所以平面BEF平面PCD命題方向3利用向量解決探索性問題 解法二:依題意,以
8、D為坐標(biāo)原點(diǎn),DA、DC、DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,因?yàn)锳B2AD2,則D(0,0,0),C(0,2,0),D1(0,0,1),A1(1,0,1), 規(guī)律總結(jié) 利用空間向量巧解探索性問題 (1)空間向量最適合于解決立體幾何中的探索性問題,它無(wú)需進(jìn)行復(fù)雜的作圖、論證、推,只需通過坐標(biāo)運(yùn)算進(jìn)行判斷 (2)解題時(shí),把要成立的結(jié)論當(dāng)作條件,據(jù)此列方程或方程組,把“是否存在”問題轉(zhuǎn)化為“點(diǎn)的坐標(biāo)是否有解,是否有規(guī)定范圍內(nèi)的解”等問題,所以為使問題的解決更簡(jiǎn)單、有效,應(yīng)善于運(yùn)用這一方法解題 解析(1)因?yàn)槠矫鍼AD平面ABCD,交線為AD,AB平面ABCD,ABAD, 所以AB平面PAD 因?yàn)镻D平面PAD,所以ABPD 又因?yàn)镻APD,PAABA,PA,AB平面PAB, 所以PD平面PAB (2)取AD中點(diǎn)O,連接OP,OC 因?yàn)镻APD,所以O(shè)PAD 又因?yàn)槠矫鍼AD平面ABCD,交線為AD,OP平面PAD, 所以O(shè)P平面ABCD 又因?yàn)锳CCD,所以O(shè)CAD 因?yàn)锳BAD,所以O(shè)CAB且OC2AB