九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案

上傳人:仙*** 文檔編號:72150029 上傳時間:2022-04-08 格式:DOC 頁數(shù):12 大小:4.17MB
收藏 版權(quán)申訴 舉報 下載
高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案_第1頁
第1頁 / 共12頁
高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案_第2頁
第2頁 / 共12頁
高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題二 函數(shù)與導(dǎo)數(shù) 專題能力訓(xùn)練7 Word版含答案(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題能力訓(xùn)練7 導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值 能力突破訓(xùn)練 1.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且滿足f(x)=af'(1)x+ln x,若f'=0,則a=(  )                  A.-1 B.-2 C.1 D.2 2.(20xx浙江,7)函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是(  ) 3.若定義在R上的函數(shù)f(x)滿足f(0)=-1,其導(dǎo)函數(shù)f'(x)滿足f'(x)>k>1,則下列結(jié)論中一定錯誤的是 (  ) A.f B.f C.f D.f 4.已知常數(shù)a,b,c都是實數(shù),f

2、(x)=ax3+bx2+cx-34的導(dǎo)函數(shù)為f'(x),f'(x)≤0的解集為{x|-2≤x≤3}.若f(x)的極小值等于-115,則a的值是(  ) A.- B. C.2 D.5 5.若直線y=kx+b是曲線y=ln x+2的切線,也是曲線y=ln(x+1)的切線,則b=     .? 6.在曲線y=x3+3x2+6x-1的切線中,斜率最小的切線方程為     .? 7.設(shè)函數(shù)f(x)=aex++b(a>0). (1)求f(x)在[0,+∞)上的最小值; (2)設(shè)曲線y=f(x)在點(2,f(2))處的切線方程為y=x,求a,b的值.

3、 8.設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(2,f(2))處的切線方程為y=(e-1)x+4. (1)求a,b的值; (2)求f(x)的單調(diào)區(qū)間. 9.設(shè)a>1,函數(shù)f(x)=(1+x2)ex-a. (1)求f(x)的單調(diào)區(qū)間; (2)證明:f(x)在區(qū)間(-∞,+∞)上僅有一個零點; (3)若曲線y=f(x)在點P處的切線與x軸平行,且在點M(m,n)處的切線與直線OP平行(O是坐標(biāo)原點),證明:m≤-1. 10.已知函數(shù)f(x)=x3+x2-ax-a,x∈R,其中a>0

4、. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍; (3)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值. 思維提升訓(xùn)練 11.(20xx陜西咸陽二模)已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),對任意x∈R滿足f(x)+f'(x)<0,則下列結(jié)論正確的是(  ) A.e2f(2)>e3f(3) B.e2f(2)

5、D.e2f(2)≤e3f(3) 12.已知f'(x)為定義在R上的函數(shù)f(x)的導(dǎo)函數(shù),對任意實數(shù)x,都有f(x)0時,若f(x)>恒成立,求整數(shù)k的最大值. 14.已知函數(shù)f(x)=ln x-ax2+x,a∈R. (1)若f(1)=0,求函數(shù)f(x)的單調(diào)遞減區(qū)間; (2)若關(guān)于x的不等式f(x)≤ax-1恒成立,求整數(shù)a的最小值; (3)若a=-2,正實數(shù)x1,x2滿足f(x1)+f(x2

6、)+x1x2=0,求證:x1+x2≥. 15.(20xx山東,理20)已知函數(shù)f(x)=x2+2cos x,g(x)=ex(cos x-sin x+2x-2),其中e≈2.718 28…是自然對數(shù)的底數(shù). (1)求曲線y=f(x)在點(π,f(π))處的切線方程. (2)令h(x)=g(x)-af(x)(a∈R),討論h(x)的單調(diào)性并判斷有無極值,有極值時求出極值. 參考答案 專題能力訓(xùn)練7 導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值 能力突破訓(xùn)練 1.D 解析因為f'(x)=a

7、f'(1)+,所以f'(1)=af'(1)+1,易知a≠1,則f'(1)=,所以f'(x)=又因為f'=0,所以+2=0,解得a=2.故選D. 2.D 解析設(shè)導(dǎo)函數(shù)y=f'(x)的三個零點分別為x1,x2,x3,且x1<00,f(x)是增函數(shù), 所以函數(shù)y=f(x)的圖象可能為D,故選D. 3.C 解析構(gòu)造函數(shù)F(x)=f(x)-kx, 則F'(x)=f'(x)-k>0, ∴函數(shù)F(x)在R上為單調(diào)遞增函數(shù). >0,∴F>F(0).

8、 ∵F(0)=f(0)=-1,∴f>-1, 即f-1=,∴f,故C錯誤. 4.C 解析依題意得f'(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,則b=-,c=-18a. 函數(shù)f(x)在x=3處取得極小值,于是有f(3)=27a+9b+3c-34=-115, 則-a=-81,解得a=2.故選C. 5.1-ln 2 解析對函數(shù)y=lnx+2求導(dǎo),得y'=,對函數(shù)y=ln(x+1)求導(dǎo),得y'=設(shè)直線y=kx+b與曲線y=lnx+2相切于點P1(x1,y1),與曲線y=ln(x+1)相切于點P2(x2,y2),則y1=lnx1+2,y2=

9、ln(x2+1).由點P1(x1,y1)在切線上,得y-(lnx1+2)=(x-x1),由點P2(x2,y2)在切線上,得y-ln(x2+1)=(x-x2).因為這兩條直線表示同一條直線, 所以解得x1=, 所以k==2,b=lnx1+2-1=1-ln2. 6.3x-y-2=0 解析y'=3x2+6x+6=3(x+1)2+3≥3.當(dāng)x=-1時,y'min=3;當(dāng)x=-1時,y=-5. 故切線方程為y+5=3(x+1),即3x-y-2=0. 7.解(1)f'(x)=aex- 當(dāng)f'(x)>0,即x>-lna時,f(x)在區(qū)間(-lna,+∞)內(nèi)單調(diào)遞增; 當(dāng)f'(x)<0,即x<-

10、lna時,f(x)在區(qū)間(-∞,-lna)內(nèi)單調(diào)遞減. ①當(dāng)00,f(x)在區(qū)間(0,-lna)內(nèi)單調(diào)遞減,在區(qū)間(-lna,+∞)內(nèi)單調(diào)遞增,從而f(x)在區(qū)間[0,+∞)內(nèi)的最小值為f(-lna)=2+b; ②當(dāng)a≥1時,-lna≤0,f(x)在區(qū)間[0,+∞)內(nèi)單調(diào)遞增, 從而f(x)在區(qū)間[0,+∞)內(nèi)的最小值為f(0)=a++b. (2)依題意f'(2)=ae2-,解得ae2=2或ae2=-(舍去). 所以a=,代入原函數(shù)可得2++b=3,即b=故a=,b= 8.解(1)因為f(x)=xea-x+bx, 所以f'(x)=(1-x)ea-x+b.

11、依題設(shè),解得a=2,b=e. (2)由(1)知f(x)=xe2-x+ex. 由f'(x)=e2-x(1-x+ex-1)及e2-x>0知,f'(x)與1-x+ex-1同號. 令g(x)=1-x+ex-1,則g'(x)=-1+ex-1. 所以,當(dāng)x∈(-∞,1)時,g'(x)<0,g(x)在區(qū)間(-∞,1)上單調(diào)遞減; 當(dāng)x∈(1,+∞)時,g'(x)>0,g(x)在區(qū)間(1,+∞)上單調(diào)遞增. 故g(1)=1是g(x)在區(qū)間(-∞,+∞)上的最小值, 從而g(x)>0,x∈(-∞,+∞). 綜上可知,f'(x)>0,x∈(-∞,+∞). 故f(x)的單調(diào)遞增區(qū)間為(-∞,+∞)

12、. 9.解(1)由題意可知函數(shù)f(x)的定義域為R,f'(x)=(1+x2)'ex+(1+x2)(ex)'=(1+x)2ex≥0, 故函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間. (2)∵a>1,∴f(0)=1-a<0,且f(a)=(1+a2)ea-a>1+a2-a>2a-a=a>0. ∴函數(shù)f(x)在區(qū)間(0,a)上存在零點. 又由(1)知函數(shù)f(x)在區(qū)間(-∞,+∞)內(nèi)單調(diào)遞增, ∴函數(shù)f(x)在區(qū)間(-∞,+∞)內(nèi)僅有一個零點. (3)由(1)及f'(x)=0,得x=-1. 又f(-1)=-a,即P, ∴kOP==a- 又f'(m)=(1+m)2em

13、,∴(1+m)2em=a- 令g(m)=em-m-1,則g'(m)=em-1, ∴由g'(m)>0,得m>0,由g'(m)<0,得m<0. ∴函數(shù)g(m)在區(qū)間(-∞,0)內(nèi)單調(diào)遞減,在區(qū)間區(qū)間(0,+∞)內(nèi)單調(diào)遞增. ∴g(m)min=g(0)=0,即g(m)≥0在R上恒成立, 即em≥m+1. ∴a-=(1+m)2em≥(1+m)2(1+m)=(1+m)3,即1+m.故m-1. 10.解(1)f'(x)=x2+(1-a)x-a=(x+1)(x-a). 由f'(x)=0,得x1=-1,x2=a>0. 當(dāng)x變化時,f'(x),f(x)的變化情況如下表: x (-∞,-1)

14、 -1 (-1,a) a (a,+∞) f'(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ 故函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,-1),(a,+∞);單調(diào)遞減區(qū)間是(-1,a). (2)由(1)知f(x)在區(qū)間(-2,-1)內(nèi)單調(diào)遞增,在區(qū)間(-1,0)內(nèi)單調(diào)遞減,從而函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點當(dāng)且僅當(dāng)解得0

15、3∈[0,1],-1∈[t,t+3],f(x)在區(qū)間[t,-1]上單調(diào)遞增,在區(qū)間[-1,t+3]上單調(diào)遞減.因此f(x)在區(qū)間[t,t+3]上的最大值M(t)=f(-1)=-,最小值m(t)為f(t)與f(t+3)中的較小者. 由f(t+3)-f(t)=3(t+1)(t+2)知,當(dāng)t∈[-3,-2]時,f(t)≤f(t+3),則m(t)=f(t),所以g(t)=f(-1)-f(t).因為f(t)在區(qū)間[-3,-2]上單調(diào)遞增,所以f(t)≤f(-2)=-故g(t)在區(qū)間[-3,-2]上的最小值為g(-2)=- ②當(dāng)t∈[-2,-1]時,t+3∈[1,2],且-1,1∈[t,t+3].

16、下面比較f(-1),f(1),f(t),f(t+3)的大小. 因為f(x)在區(qū)間[-2,-1],[1,2]上單調(diào)遞增, 所以f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2). 因為f(1)=f(-2)=-,f(-1)=f(2)=-, 從而M(t)=f(-1)=-,m(t)=f(1)=-所以g(t)=M(t)-m(t)= 綜上,函數(shù)g(t)在區(qū)間[-3,-1]上的最小值為 思維提升訓(xùn)練 11.A 解析利用單調(diào)性解抽象不等式時,關(guān)鍵要注意結(jié)論與已知條件的聯(lián)系,通過構(gòu)造合適的函數(shù)來求解. 令g(x)=exf(x),則g'(x)=ex(f(x)+f'(x))<0,

17、所以g(x)在R上單調(diào)遞減,所以g(2)>g(3),即e2f(2)>e3f(3).故選A. 12.(-∞,-2) 解析若g(x)=, 則g'(x)=>0, 所以g(x)在R上為增函數(shù). 又不等式f(m+1)0,∴f'(x)<0.

18、故f(x)的單調(diào)遞減區(qū)間為(-1,0),(0,+∞). (2)當(dāng)x>0時,f(x)>恒成立, 則k<(x+1)f(x). 令g(x)=(x+1)f(x)=,則g'(x)= 令φ(x)=1-x+ln(x+1)(x>0)?φ'(x)=-<0,所以φ(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減. 又φ(2)=ln3-1>0,φ(3)=2ln2-2<0, 則存在實數(shù)t∈(2,3),使φ(t)=0?t=1+ln(t+1). 所以g(x)在區(qū)間(0,t)內(nèi)單調(diào)遞減,在區(qū)間(t,+∞)內(nèi)單調(diào)遞增. 所以g(x)min=g(t)==t+1∈(3,4),故kmax=3. 14.解(1)因為f(1)=1-

19、=0,所以a=2. 此時f(x)=lnx-x2+x,x>0. 則f'(x)=-2x+1=(x>0). 令f'(x)<0,則2x2-x-1>0. 又x>0,所以x>1. 所以f(x)的單調(diào)遞減區(qū)間為(1,+∞). (2)(方法一)令g(x)=f(x)-(ax-1)=lnx-ax2+(1-a)x+1,則g'(x)=-ax+(1-a)= 當(dāng)a≤0時,因為x>0,所以g'(x)>0. 所以g(x)在區(qū)間(0,+∞)內(nèi)是增函數(shù), 又g(1)=ln1-a×12+(1-a)+1=-a+2>0,所以關(guān)于x的不等式f(x)≤ax-1不能恒成立. 當(dāng)a>0時,g'(x)==-(x>0), 令

20、g'(x)=0,得x= 所以當(dāng)x時,g'(x)>0;當(dāng)x時,g'(x)<0, 因此函數(shù)g(x)在x內(nèi)是增函數(shù),在x內(nèi)是減函數(shù). 故函數(shù)g(x)的最大值為g=lna+(1-a)+1=-lna. 令h(a)=-lna, 因為h(1)=>0,h(2)=-ln2<0,又h(a)在a∈(0,+∞)內(nèi)是減函數(shù),且a為整數(shù), 所以當(dāng)a≥2時,h(a)<0. 所以整數(shù)a的最小值為2. (方法二)由f(x)≤ax-1恒成立,得lnx-ax2+x≤ax-1在(0,+∞)內(nèi)恒成立, 問題等價于a在區(qū)間(0,+∞)內(nèi)恒成立. 令g(x)=, 因為g'(x)=, 令g'(x)=0,得-x-lnx

21、=0. 設(shè)h(x)=-x-lnx, 因為h'(x)=-<0,所以h(x)在區(qū)間(0,+∞)上單調(diào)遞減, 不妨設(shè)-x-lnx=0的根為x0. 當(dāng)x∈(0,x0)時,g'(x)>0;當(dāng)x∈(x0,+∞)時,g'(x)<0,所以g(x)在x∈(0,x0)內(nèi)是增函數(shù);在x∈(x0,+∞)內(nèi)是減函數(shù).所以g(x)max=g(x0)= 因為h=ln2->0,h(1)=-<0, 所以0. 由f(x1)+f(x2)+x1x2=0, 得l

22、nx1++x1+lnx2++x2+x1x2=0, 從而(x1+x2)2+x1+x2=x1·x2-ln(x1·x2). 令t=x1·x2(t>0),φ(t)=t-lnt,則φ'(t)= 可知,φ(t)在區(qū)間(0,1)內(nèi)單調(diào)遞減,在區(qū)間(1,+∞)內(nèi)單調(diào)遞增. 所以φ(t)≥φ(1)=1,所以(x1+x2)2+x1+x2≥1,因此x1+x2或x1+x2(舍去). 15.解(1)由題意f(π)=π2-2, 又f'(x)=2x-2sinx,所以f'(π)=2π, 因此曲線y=f(x)在點(π,f(π))處的切線方程為y-(π2-2)=2π(x-π),即y=2πx-π2-2. (2)由題

23、意得h(x)=ex(cosx-sinx+2x-2)-a(x2+2cosx), 因為h'(x)=ex(cosx-sinx+2x-2)+ex(-sinx-cosx+2)-a(2x-2sinx) =2ex(x-sinx)-2a(x-sinx) =2(ex-a)(x-sinx), 令m(x)=x-sinx,則m'(x)=1-cosx≥0, 所以m(x)在R上單調(diào)遞增. 因為m(0)=0,所以當(dāng)x>0時,m(x)>0; 當(dāng)x<0時,m(x)<0. ①當(dāng)a≤0時,ex-a>0,當(dāng)x<0時,h'(x)<0,h(x)單調(diào)遞減,當(dāng)x>0時,h'(x)>0,h(x)單調(diào)遞增, 所以當(dāng)x=0時h(

24、x)取到極小值,極小值是h(0)=-2a-1; ②當(dāng)a>0時,h'(x)=2(ex-elna)(x-sinx),由h'(x)=0得x1=lna,x2=0. (ⅰ)當(dāng)00,h(x)單調(diào)遞增; 當(dāng)x∈(lna,0)時,ex-elna>0,h'(x)<0,h(x)單調(diào)遞減; 當(dāng)x∈(0,+∞)時,ex-elna>0,h'(x)>0,h(x)單調(diào)遞增. 所以當(dāng)x=lna時h(x)取到極大值. 極大值為h(lna)=-a[ln2a-2lna+sin(lna)+cos(lna)+2], 當(dāng)x=0時h(x)取到極

25、小值,極小值是h(0)=-2a-1; (ⅱ)當(dāng)a=1時,lna=0,所以當(dāng)x∈(-∞,+∞)時,h'(x)≥0,函數(shù)h(x)在(-∞,+∞)上單調(diào)遞增,無極值; (ⅲ)當(dāng)a>1時,lna>0,所以當(dāng)x∈(-∞,0)時,ex-elna<0,h'(x)>0,h(x)單調(diào)遞增; 當(dāng)x∈(0,lna)時,ex-elna<0,h'(x)<0,h(x)單調(diào)遞減; 當(dāng)x∈(lna,+∞)時,ex-elna>0,h'(x)>0,h(x)單調(diào)遞增. 所以當(dāng)x=0時h(x)取到極大值,極大值是h(0)=-2a-1; 當(dāng)x=lna時h(x)取到極小值,極小值是h(lna)=-a[ln2a-2lna+si

26、n(lna)+cos(lna)+2]. 綜上所述: 當(dāng)a≤0時,h(x)在區(qū)間(-∞,0)上單調(diào)遞減,在區(qū)間(0,+∞)上單調(diào)遞增,函數(shù)h(x)有極小值,極小值是h(0)=-2a-1; 當(dāng)01時,函數(shù)h(x)在區(qū)間(-∞,0)和(lna,+∞)上單調(diào)遞增,在區(qū)間(0,lna)上單調(diào)遞減,函數(shù)h(x)有極大值,也有極小值,極大值是h(0)=-2a-1,極小值是h(lna)=-a[ln2a-2lna+sin(lna)+cos(lna)+2].

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!