《新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題8 平面向量含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題8 平面向量含解析(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、【走向高考【走向高考】 (全國(guó)通用全國(guó)通用)20 xx20 xx 高考數(shù)學(xué)二輪復(fù)習(xí)高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分第一部分 微專題微專題強(qiáng)化練強(qiáng)化練 專題專題 8 8 平面向量平面向量一、選擇題1設(shè)xR R,向量a a(x,1),b b(1,2),且a ab b,則|a ab b|()A. 5B. 10C2 5D10答案B解析本題考查向量的模及垂直問(wèn)題a ab b,a ab b0,x20,x2,a ab b(3,1),|a ab b| 10.方法點(diǎn)撥1.平面向量的平行與垂直是高考命題的主要方向之一, 此類題常見(jiàn)命題形式是:考查坐標(biāo)表示;與三角函數(shù)、三角形、數(shù)列、解析幾何等結(jié)合,解題時(shí)直接運(yùn)用向量有關(guān)
2、知識(shí)列出表達(dá)式,再依據(jù)相關(guān)知識(shí)及運(yùn)用相關(guān)方法加以解決2點(diǎn)共線和向量共線,直線平行與向量平行既有聯(lián)系又有區(qū)別3注意垂直與平行的坐標(biāo)表示不要混淆2(文)(20 xx新課標(biāo)理,3)設(shè)向量a a、b b滿足|a ab b| 10,|a ab b| 6,則a ab b()A1B2C3D5答案A解析本題考查平面向量的模,平面向量的數(shù)量積|a ab b| 10,|a ab b| 6,a a2b b22a ab b10,a a2b b22a ab b6.聯(lián)立方程解得abab1,故選 A.(理)設(shè)向量a a,b b滿足|a a|2,a ab b32,|a ab b|2 2,則|b b|等于()A.12B1C.3
3、2D2答案B解析|a ab b|2|a a|22a ab b|b b|243|b b|28,|b b|1.3(文)(20 xx四川文,2)設(shè)向量a a(2,4)與向量b b(x,6)共線,則實(shí)數(shù)x()A2B3C4D6答案B解析由向量平行的性質(zhì),有 24x6,解得x3,選 B.方法點(diǎn)撥若a a與b b都是非零向量0,則a ab b0a a與b b共線;若a a與b b不共線,則a ab b00,a a(x1,y1)與b b(x2,y2)共線x1y2x2y10 x1y1x2y2(y1y20)(理)(20 xx新課標(biāo)文,2)已知點(diǎn)A(0,1),B(3,2),向量AC(4,3),則向量BC()A(7,
4、4)B(7,4)C(1,4)D(1,4)答案A解析本題主要考查平面向量的線性運(yùn)算BCBAAC(3,1)(4,3)(7,4)故本題正確答案為 A.4(20 xx北京文,6)設(shè)a a,b b是非零向量,“a ab b|a|b|a|b|”是“a ab b”的()A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件答案A解析考查充分必要條件、向量共線a ab b|a|a|b|b|cosa a,b b ,由已知得 cosa a,b b1 1,即a a,b b0 0,a ab.b.而當(dāng)a ab b時(shí), a a,b b還可能是,此時(shí)a ab b|a|b|a|b|,故“a ab b|a|b
5、|a|b|”是“a ab b”的充分而不必要條件5 5(文)如果不共線向量a a、b b滿足 2|a a|b b|, 那么向量 2a ab b與 2a ab b的夾角為()A.6B.3C.2D.23答案C解析(2a ab b)(2a ab b)4|a a|2|b b|20,(2a ab b)(2a ab b),選 C.(理)若兩個(gè)非零向量a a、b b滿足|a ab b|a ab b|2|a a|,則向量a ab b與a ab b的夾角是()A.6B.3C.23D.56答案C解析解法 1:由條件可知,a ab b0,|b b| 3|a a|,則 cosa ab ba ab b|a ab b|a
6、 ab b|a a2b b22|a a|22a a24a a21223.解法 2:由向量運(yùn)算的幾何意義,作圖可求得a ab b與a ab b的夾角為23.方法點(diǎn)撥兩向量夾角的范圍是0,a ab b0 與a a,b b為銳角不等價(jià);a ab b0,b0)的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使(OPOF2)F2P0,O為坐標(biāo)原點(diǎn),且|PF1|2|PF2|,則雙曲線的離心率為()A. 2B. 3C2D. 5答案D解析由(OPOF2)F2P0,得(OPOF2)(OPOF2)0,即|OP|2|OF2|20,所以|OP|OF2|c, 所以PF1F2中, 邊F1F2上的中線等于|F1F2|的一半, 則P
7、F1PF2, 即|PF1|2|PF2|24c2,又|PF1|2|PF2|,解得|PF1|45c,|PF2|25c.所以|PF1|PF2|25c2a,所以 eca 5.二、填空題11(文)在邊長(zhǎng)為 1 的正三角形ABC中,設(shè)BC2BD,CA3CE,則ADBE_.答案14解析如圖,令A(yù)Ba a,ACb b,AD12(a ab b),BEBCCE(b ba a)b b323b ba a,ADBEa a2b b2 23b ba a13a ab b|a a|22|b b|2312a ab b|b b|23|a a|2216a ab b1312161214.(理)(20 xx天津文,13)在等腰梯形ABC
8、D中,已知ABDC,AB2,BC1,ABC60 .點(diǎn)E和F分別在線段BC和DC上, 且BE23BC,DF16DC,則AEAF的值為_(kāi)答案2918解析考查平面向量的數(shù)量積如圖,O為AB的中點(diǎn),設(shè)A Oa a,A Db b,則|a a|b b|1 且a ab b12,根據(jù)梯形的性質(zhì)可得D CA Oa a,B CO Db ba a.所以A EA BB EA B23B C2a a23(b ba a)43a a23b b.A FA DD FA D16D C16a ab b.所以A EA F4 43 3a a2 23 3b b1 16 6a ab b29a a2139a ab b23b b22918.12
9、(文)已知單位向量e e1與e e2的夾角為,且 cos13,向量a a3e e12e e2與b b3e e1e e2的夾角為,則 cos_.答案2 23解析本題考查平面向量數(shù)量積的性質(zhì)及運(yùn)算依題意e e1e e2|e e1|e e2|cos13,|a a|29e e2112e e1e e24e e229,|a a|3,|b b|29e e216e e1e e2e e228,a ab b9e e219e e1e e22e e228,|b b|2 2,cosa ab b|a a|b b|832 22 23.(理)如圖所示,A、B、C是圓O上的三點(diǎn),線段CO的延長(zhǎng)線與線段BA的延長(zhǎng)線交于圓O外的點(diǎn)
10、D,若OCmOAnOB,則mn的取值范圍是_答案(1,0)解析根據(jù)題意知,線段CO的延長(zhǎng)線與線段BA的延長(zhǎng)線的交點(diǎn)為D,則ODtOC.D在圓外,t1,又D、A、B共線,存在、,使得ODOAOB,且1,又由已知,OCmOAnOB,tmOAtnOBOAOB,mn1t,故mn(1,0)13(20 xx安徽文,15)ABC是邊長(zhǎng)為 2 的等邊三角形,已知向量a a,b b滿足AB2a a,AC2a ab b,則下列結(jié)論中正確的是_(寫(xiě)出所有正確結(jié)論的編號(hào))a a為單位向量;b b為單位向量;a ab;b;b bBC;(4a ab b)BC.答案解析考查 1.平面向量的基本概念;2.平面向量的性質(zhì)等邊三
11、角形ABC的邊長(zhǎng)為 2,AB2a2a, |AB|2|a a|2|a a|1, 故正確;ACABBC2a aBC,BCb b|b b|2,故錯(cuò)誤,正確;由于AB2a a,BCb ba a與b b夾角為 120,故錯(cuò)誤;又(4a4ab b)BC(4a4ab b)b b4a4ab b|b|b|2412(12)40,(4a4ab b)BC,故正確,因此,正確的編號(hào)是.14(文)如圖,在四邊形ABCD中,AC和BD相交于點(diǎn)O,設(shè)ADa a,ABb b,若AB2DC,則AO_(用向量a a和b b表示)答案23a a13b b解析據(jù)題意可得ACADDCAD12ABa a12b b,又由AB2DC,可得AO
12、23AC23(a a12b b)23a a13b b.(理)已知O為坐標(biāo)原點(diǎn), 點(diǎn)M(3,2), 若N(x,y)滿足不等式組x1,y0,xy4.則OMON的最大值為_(kāi)答案12解析據(jù)不等式組得可行域如圖所示:由于zOMON3x2y, 結(jié)合圖形進(jìn)行平移可得點(diǎn)A(4,0)為目標(biāo)函數(shù)取得最大值的最優(yōu)解即zmax342012.三、解答題15(文)已知向量a a(cos,sin),0,向量b b( 3,1)(1)若a ab b,求的值;(2)若|2a ab b|m恒成立,求實(shí)數(shù)m的取值范圍解析(1)a ab b, 3cossin0,得 tan 3.又0,3.(2)2a ab b(2cos 3,2sin1)
13、,|2a ab b|2(2cos 3)2(2sin1)288(12sin32cos)88sin(3)又0,33,23,sin(3)32,1,|2a ab b|2的最大值為 16,|2a ab b|的最大值為 4.又|2a ab b|4.(理)在ABC中,角A、B、C所對(duì)的對(duì)邊長(zhǎng)分別為a、b、c.(1)設(shè)向量x x(sinB,sinC),向量y y(cosB,cosC),向量z z(cosB,cosC),若z z(x xy y),求 tanBtanC的值;(2)若 sinAcosC3cosAsinC0,證明:a2c22b2.解析(1)x xy y(sinBcosB,sinCcosC),z z(x
14、 xy y),cosB(sinCcosC)cosC(sinBcosB)0,整理得 tanCtanB20,tanCtanB2.(2)證明:sinAcosC3cosAsinC0,由正、余弦定理得:aa2b2c22ab3b2c2a22bcc0,a2c22b2.16(文)已知向量a a(sinx2,12),b b(cosx2,12)(0,x0),函數(shù)f(x)a ab b的第n(nN N*)個(gè)零點(diǎn)記作xn(從左向右依次計(jì)數(shù)),則所有xn組成數(shù)列xn(1)若12,求x2;(2)若函數(shù)f(x)的最小正周期為,求數(shù)列xn的前 100 項(xiàng)和S100.解析f(x)a ab bsinx2cosx21412sinx1
15、4.(1)當(dāng)12時(shí),f(x)12sin(12x)14,令f(x)0,得x4k3或x4k53(kZ Z,x0),取k0,得x253.(2)因?yàn)閒(x)最小正周期為,則2,故f(x)12sin2x14,令f(x)0 得xk12或xk512(kZ Z,x0),所以S100錯(cuò)誤錯(cuò)誤!(k12)(k512)錯(cuò)誤錯(cuò)誤!(2k2)2(01249)5025049252475.方法點(diǎn)撥1.不含坐標(biāo)的向量綜合問(wèn)題,解答時(shí),按向量有關(guān)概念、性質(zhì)、法則等通過(guò)運(yùn)算解決,若條件方便建立坐標(biāo)系,則建立坐標(biāo)系用坐標(biāo)運(yùn)算解決,給出坐標(biāo)的向量綜合問(wèn)題,直接按向量各概念、法則的坐標(biāo)表示將向量問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題處理2向量與其他知識(shí)交
16、匯的題目,先按向量的概念、性質(zhì)、法則脫去向量外衣,轉(zhuǎn)化為相應(yīng)的三角、數(shù)列、不等式、函數(shù)、解析幾何等問(wèn)題,再按相應(yīng)的知識(shí)選取解答方法(理)(20 xx太原市一模)已知橢圓x2a2y2b21(ab0)的左、右焦點(diǎn)分別是點(diǎn)F1、F2,其離心率 e12,點(diǎn)P為橢圓上的一個(gè)動(dòng)點(diǎn),PF1F2內(nèi)切圓面積的最大值為43.(1)求a,b的值;(2)若A、B、C、D是橢圓上不重合的四個(gè)點(diǎn),且滿足F1AF1C,F(xiàn)1BF1D,ACBD0,求|AC|BD|的取值范圍解析(1)由題意得,當(dāng)點(diǎn)P是橢圓的上、下頂點(diǎn)時(shí),PF1F2內(nèi)切圓面積取最大值,設(shè)PF1F2內(nèi)切圓半徑為r,則r243,r2 33,此時(shí)SPF1F212|F1
17、F2|OP|bc,又SPF1F212(|F1F2|F1P|F2P|)r2 33(ac),bc2 33(ac),eca12,a2c,b2 3,a4.(2)F1AF1C,F(xiàn)1BF1D,ACBD0,直線AC與BD垂直相交于點(diǎn)F1,由(1)得橢圓的方程為x216y2121,則F1的坐標(biāo)為(2,0),當(dāng)直線AC與BD中有一條直線斜率不存在時(shí),易得|AC|BD|6814,當(dāng)直線AC斜率k存在且k0 時(shí),則其方程為yk(x2),設(shè)A(x1,y1),C(x2,y2),則點(diǎn)A,C的坐標(biāo)是方程組ykx2,x216y2121的兩組解(34k2)x216k2x16k2480.x1x216k234k2,x1x216k24834k2,|AC| 1k2|x1x2|24k2134k2.此時(shí)直線BD的方程為y1k(x2)同理,由y1kx2,x216y2121,可得|BD|24k213k24.|AC|BD|24k214k2324k213k24168k2123k244k23.令tk21(k0),則t1,|AC|BD|16812t1t2,t1,0t1t214,|AC|BD|967,14,由可知,|AC|BD|的取值范圍是967,14.