【走向高考】全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題4 函數(shù)與方程、函數(shù)的應(yīng)用含解析
《【走向高考】全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題4 函數(shù)與方程、函數(shù)的應(yīng)用含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《【走向高考】全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題4 函數(shù)與方程、函數(shù)的應(yīng)用含解析(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、【走向高考】(全國(guó)通用)2016高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題4 函數(shù)與方程、函數(shù)的應(yīng)用 一、選擇題 1.若x0是方程x=x的解,則x0屬于區(qū)間( ) A. B. C. D. [答案] C [解析] 令f(x)=x-x,f(1)=-1=-<0, f=-<0, f=->0, f=-=-<0, ∴f(x)在區(qū)間內(nèi)有零點(diǎn). 2.利民工廠某產(chǎn)品的年產(chǎn)量在150t至250t之間,年生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(t)之間的關(guān)系可近似地表示為y=-30x+4000,則每噸的成本最低時(shí)的年產(chǎn)量為( ) A.240 B.200 C.180
2、D.160
[答案] B
[解析] 依題意得每噸的成本是=+-30,則≥2-30=10,當(dāng)且僅當(dāng)=,即x=200時(shí)取等號(hào),因此當(dāng)每噸的成本最低時(shí),相應(yīng)的年產(chǎn)量是200t,選B.
3.(文)(2014山東理,8)已知函數(shù)f(x)=|x-2|+1,g(x)=kx,若方程f(x)=g(x)有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是( )
A.(0,) B.(,1)
C.(1,2) D.(2,+∞)
[答案] B
[解析] 作出函數(shù)y=f(x)的圖象如圖,當(dāng)y=kx在l1位置時(shí),過(guò)A(2,1),∴k=,在l2位置時(shí)與l3平行,k=1,
∴ 3、)是最小正周期為2π的偶函數(shù),f ′(x)是f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0 4、(x)在(,π)上單調(diào)遞增.
∵當(dāng)x∈[0,π]時(shí),0 5、
C. D.
[答案] C
[解析] 如圖,由圖形可知點(diǎn)(a,b)所在區(qū)域的面積S=4,滿足函數(shù)f(x)=ax+b在區(qū)間(1,2)上存在一個(gè)零點(diǎn)的點(diǎn)(a,b)所在區(qū)域面積S′=12=,故所求概率P==.
5.(2015天津理,8)已知函數(shù)f(x)=函數(shù)g(x)=b-f(2-x),其中b∈R.若函數(shù)y=f(x)-g(x)恰有4個(gè)零點(diǎn),則b的取值范圍是( )
A. B.
C. D.
[答案] D
[解析] 考查求函數(shù)解析式;函數(shù)與方程及數(shù)形結(jié)合的思想.
由f(x)=
得f(2-x)=
所以y=f(x)+f(2-x)
=
即y=f(x)+f(2-x)=
6、y=f(x)-g(x)=f(x)+f(2-x)-b,
所以y=f(x)-g(x)恰有4個(gè)零點(diǎn)等價(jià)于方程
f(x)+f(2-x)-b=0有4個(gè)不同的解,即函數(shù)y=b與函數(shù)y=f(x)+f(2-x)的圖象有4個(gè)公共點(diǎn),由圖象可知
7、x1、x2、x3、x4、x5,由對(duì)稱性知x1+x2=-π,x3+x4=π,
又π 8、∴f′(x)>0在R上恒成立,∴f(x)在R上為增函數(shù),
又f(-1)f(0)<0,∴f(x)只有一個(gè)零點(diǎn),
記作x1,則x1∈(-1,0),
g(1)=1-1+-+…+->0,
g(2)=1-2+-+…+-<0,
又當(dāng)x>0時(shí),g′(x)=-1+x-x2+x3+…-x2012==<0,∴g(x)單調(diào)遞減,∴g(x)也只有一個(gè)零點(diǎn),記為x2,x2∈(1,2),F(xiàn)(x)=f(x+3)g(x-4)有兩個(gè)不同零點(diǎn)x3、x4,x3∈(-4,-3),x4∈(5,6),又F(x)的零點(diǎn)均在區(qū)間[a,b]內(nèi),且a
9、x)的零點(diǎn)值時(shí),直接令f(x)=0解方程,當(dāng)f(x)為分段函數(shù)時(shí),要分段列方程組求解;
2.已知f(x)在區(qū)間[a,b]上單調(diào)且有零點(diǎn)時(shí),利用f(a)f(b)<0討論;
3.求f(x)的零點(diǎn)個(gè)數(shù)時(shí),一般用數(shù)形結(jié)合法;討論函數(shù)y=f(x)與y=g(x)的圖象交點(diǎn)個(gè)數(shù),即方程f(x)=g(x)的解的個(gè)數(shù),一般用數(shù)形結(jié)合法.
4.已知零點(diǎn)存在情況求參數(shù)的值或取值范圍時(shí),利用方程思想和數(shù)形結(jié)合思想,構(gòu)造關(guān)于參數(shù)的方程或不等式求解.
7.(文)已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍為( )
A.(2,+∞) B.(1,+∞)
C.(- 10、∞,-2) D.(-∞,-1)
[答案] C
[解析] f ′(x)=3ax2-6x=3x(ax-2),若a>0,則f(x)在(-∞,0)和(,+∞)上單調(diào)遞增,在(0,)上單調(diào)遞減,又f(0)=1,∴f(x)不可能存在唯一零點(diǎn);由選項(xiàng)知a=0不必考慮;a<0時(shí),f(x)在(-∞,)和(0,+∞)上單調(diào)遞減,在(,0)上單調(diào)遞增,欲使f(x)落在唯一零點(diǎn)x0>0,應(yīng)有極小值f()>0,
即a()3-3()2+1>0,∴a<-2.
[點(diǎn)評(píng)] 可以用驗(yàn)證法求解.
(理)現(xiàn)有四個(gè)函數(shù):①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的圖象(部分)如下:
則按照從 11、左到右圖象對(duì)應(yīng)的函數(shù)序號(hào)安排正確的一組是( )
A.①④②③ B.①④③②
C.④①②③ D.③④②①
[答案] A
[解析]?、賧=xsinx為偶函數(shù),對(duì)應(yīng)第一個(gè)圖;②y=xcosx為奇函數(shù),且x>0時(shí),y可正可負(fù),對(duì)應(yīng)第三個(gè)圖;③y=x|cosx|為奇函數(shù),且x>0時(shí),y>0,對(duì)應(yīng)第四個(gè)圖;④y=x2x為增函數(shù),對(duì)應(yīng)第二個(gè)圖,故選A.
8.已知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當(dāng)x∈(0,1]時(shí),f(x)=log2x,則在(8,10)內(nèi)滿足方程f(x)+1=f(1)的實(shí)數(shù)x為( )
A. B.9
C. D.
[答案] C
[解析 12、] 由條件知f(-x)=f(x)?、?,f(-x+1)=-f(x+1)?、?,在②式中給x賦值x+1得f(-x)=-f(x+2),將①代入得f(x+2)=-f(x),∴f(x+4)=f(x),∴f(x)的周期為4.在②中令x=0得f(1)=0,∴方程f(x)+1=f(1),化為f(x)=-1,由于f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,當(dāng)0 13、.若函數(shù)f(x)在區(qū)間(k-1,k)(k∈Z)上有零點(diǎn),則k的值為( )
A.2或-7 B.2或-8
C.1或-7 D.1或-8
[答案] A
[解析] ∵f(1)=-1<0,f(2)=1>0,∴f(x)在(1,2)上有零點(diǎn),又f(x)的圖象關(guān)于直線x=-3對(duì)稱,
∴f(x)在(-8,-7)上有零點(diǎn),∴k=2或-7.
(理)(2015長(zhǎng)沙一模)使得函數(shù)f(x)=x2-x-(a≤x≤b)的值域?yàn)閇a,b](a
14、,b]上為單調(diào)增函數(shù),故有即a,b是方程f(x)=x的兩根,方程化簡(jiǎn)得x2-9x-7=0,易知方程不可能存在兩個(gè)不小于2的實(shí)根;當(dāng)b≤2時(shí),函數(shù)f(x)在區(qū)間[a,b]上為單調(diào)遞減函數(shù),故有即消元化簡(jiǎn)得a2+a-2=0,∴a=-2或a=1,代入原方程組解得滿足條件的解為即實(shí)數(shù)對(duì)(-2,1)滿足條件;當(dāng)a<2
15、有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.a(chǎn)> B.a(chǎn)≥
C.a(chǎn)< D.a(chǎn)≤
[答案] A
[解析] 當(dāng)x≤0時(shí),函數(shù)y=-x與函數(shù)y=3x的圖象有一個(gè)交點(diǎn),
所以函數(shù)y=f(x)有一個(gè)零點(diǎn);
而函數(shù)f(x)在其定義域上只有一個(gè)零點(diǎn),
所以當(dāng)x>0時(shí),f(x)沒(méi)有零點(diǎn).
當(dāng)x>0時(shí),f ′(x)=x2-4,
令f ′(x)=0得x=2,所以f(x)在(0,2)上遞減,
在(2,+∞)上遞增,因此f(x)在x=2處取得極小值f(2)=a->0,解得a>.故選A.
(理)已知定義域?yàn)?-1,1]的函數(shù)f(x),對(duì)任意x∈(-1,0],f(x+1)=,當(dāng)x∈[0,1]時(shí),f 16、(x)=x,若在區(qū)間(-1,1]內(nèi)g(x)=f(x)-mx-m有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.[0,) B.[,+∞)
C.[0,) D.(0,]
[答案] D
[解析] ∵x∈(-1,0]時(shí),x+1∈(0,1],又x∈[0,1]時(shí),f(x)=x,∴f(x+1)=x+1,又f(x+1)=,∴x∈(-1,0]時(shí),f(x)=-1,作出函數(shù)f(x)=的圖象,由于y=m(x+1)過(guò)定點(diǎn)(-1,0),∴要使y=m(x+1)與y=f(x)的圖象有兩個(gè)交點(diǎn),應(yīng)有0 17、范圍是( )
A.[-1,1) B.{-1,0}
C.(-∞,-1]∪[0,1) D.[-1,0]∪(1,+∞)
[答案] A
[解析] y=當(dāng)λ=1時(shí),曲線C與圓x2+y2=4有三個(gè)不同公共點(diǎn),當(dāng)0<λ<1時(shí),曲線C為焦點(diǎn)在y軸上的橢圓,滿足題設(shè)要求,當(dāng)λ>1時(shí),不滿足;當(dāng)λ<0時(shí),曲線C為焦點(diǎn)在x軸上的雙曲線,其漸近線斜率k=,由題意應(yīng)有≥1,∴-1≤λ<0,綜上知-1≤λ<1.
(理)已知函數(shù)f(x)=若方程f(x)=t(t∈R)有四個(gè)不同的實(shí)數(shù)根x1、x2、x3、x4,則x1x2x3x4的取值范圍為( )
A.(30,34) B.(30,36)
C.(32,34) D 18、.(32,36)
[答案] C
[解析] 設(shè)四個(gè)實(shí)數(shù)根滿足x1 19、0≤log2或≤x0≤2,故選C.
二、填空題
13.已知定義域?yàn)镽的函數(shù)f(x)既是奇函數(shù),又是周期為3的周期函數(shù),當(dāng)x∈(0,)時(shí),f(x)=sinπx,則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是________.
[答案] 7
[解析] 易知在(-,)內(nèi),有f(-1)=0,f(0)=0,f(1)=0,即f(x)在一個(gè)周期內(nèi)有3個(gè)零點(diǎn),又區(qū)間[0,6]包含f(x)的2個(gè)周期,而兩端點(diǎn)都是f(x)的零點(diǎn),故f(x)在[0,6]內(nèi)有7個(gè)零點(diǎn).
14.設(shè)函數(shù)y=x3與y=()x-2的圖象的交點(diǎn)為(x0,y0).若x0所在的區(qū)間是(n,n+1)(n∈Z),則n=________.
[ 20、答案] 1
[解析] 由函數(shù)圖象知,1 21、,
∴f(-1)=a-1-1-b=log32-1-log32=-1<0,
f(0)=a0-b=1-log32>0,
∴f(x)在(-1,0)內(nèi)存在零點(diǎn),
又f(x)為增函數(shù),∴f(x)在(-1,0)內(nèi)只有一個(gè)零點(diǎn),
∴n=-1.
三、解答題
16.(文)設(shè)函數(shù)f(x)=x3+x2-ax+a,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若方程f(x)=0在(0,2)內(nèi)恰有兩個(gè)實(shí)數(shù)根,求a的取值范圍;
(3)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在[t,t+3](t∈(-3,-2))上的最大值為H(t),最小值為h(t),記g(t)=H(t)-h(huán)(t),求函數(shù)g(t)的最小值.
22、
[解析] (1)f ′(x)=x2+(a-1)x-a=(x+a)(x-1),
令f ′(x)=0得,x1=1,x2=-a<0,
當(dāng)x變化時(shí),f ′(x),f(x)變化情況如下表:
x
(-∞,-a)
-a
(-a,1)
1
(1,+∞)
f ′(x)
+
0
-
0
+
f(x)
極大值
極小值
函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-a),(1,+∞),單調(diào)減區(qū)間為(-a,1).
(2)由(1)知f(x)在(0,1)上單調(diào)遞減,在(1,2)上單調(diào)遞增,從而方程f(x)=0在區(qū)間(0,2)內(nèi)恰有兩個(gè)實(shí)數(shù)根等價(jià)于f(0)>0,f(1)<0,f
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識(shí)
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎(jiǎng)懲辦法范文
- 安全作業(yè)活動(dòng)安全排查表
- 某公司危險(xiǎn)源安全辨識(shí)、分類和風(fēng)險(xiǎn)評(píng)價(jià)、分級(jí)辦法
- 某公司消防安全常識(shí)培訓(xùn)資料
- 安全培訓(xùn)資料:危險(xiǎn)化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂(lè)度寒假充實(shí)促成長(zhǎng)
- 紅色插畫風(fēng)輸血相關(guān)知識(shí)培訓(xùn)臨床輸血流程常見(jiàn)輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制