九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

《定積分的簡單應用》參考教案

上傳人:飛*** 文檔編號:40607979 上傳時間:2021-11-16 格式:DOCX 頁數(shù):8 大?。?9.48KB
收藏 版權申訴 舉報 下載
《定積分的簡單應用》參考教案_第1頁
第1頁 / 共8頁
《定積分的簡單應用》參考教案_第2頁
第2頁 / 共8頁
《定積分的簡單應用》參考教案_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《定積分的簡單應用》參考教案》由會員分享,可在線閱讀,更多相關《《定積分的簡單應用》參考教案(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 定積分的簡單應用 教學目標: 1、 進一步讓學生深刻體會“分割、以直代曲、求和、逼近”求曲邊梯形的思想方法; 2、 讓學生深刻理解定積分的幾何意義以及微積分的基本定理; 3、 初步掌握利用定積分求曲邊梯形的幾種常見題型及方法, 以及利用定積分求一些簡單 的旋轉體的體積; 4、 體會定積分在物理中應用(變速直線運動的路程、變力沿直線做功) 。 教學重點: 幾種曲邊梯形面積的求法。 教學難點: 定積分求體積以及在物理中應用。 教學過程: 一、問題情境 1、求曲邊梯形的思想方法是什么? 2、定積分的幾

2、何意義是什么? 3、微積分基本定理是什么? 二、數(shù)學應用 (一)利用定積分求平面圖形的面積 例 1、求曲線 y sin x x [0, 2 ] 與直線 x 0, x 2 , x 軸所圍成的圖形面積。 3 3 2 2 3 答案: S= 3 sin xdx cos x |o3 2 0

3、 變式引申: 、求直線 y 2x 3 與拋物線 y 2 所圍成的圖形面積。 1 x 答案: S= (2 x+3- x 2 ) dx ( x2 3 x x 3 ) |3 1 32 3 1 3 3 y 2、求由拋物線 y x 2 4x 3 及其在點 M( 0,- 3)

4、 和 N(3,0)處的兩條切線所圍成的圖形的面積。 略解: y/ 2 x 4 ,切線方程分別為 y 4 x 3 、 o x y 2x 6 ,則所求圖形的面積為  y= -x2+4x-3 3 x )]dx 3 [( x ) ( x 2 x )]dx= 9 S= 2 [( x ) ( x 2 4 3 4 3 2 6 4 3 0 3 4 2

5、 3、求曲線 y log 2 x 與曲線 y log 2 ( 4 x) 以及 x 軸所圍成的圖形面積。 略解:所求圖形的面積為 1 1 ( 4 2 2 y )dy S= 【g( y) f ( y)dy 0 0

6、 (4 y 2 2 y log 2 e) |10 4 2 log 2 e 4、在曲線 y x2 ( x 0) 上的某點 A 處作一切線使之與曲線以及 x 軸所圍成的面積為 1 . 試 x 12 求:切點 A 的坐標以及切線方程 . y=x2 略解:如圖由題可設切點坐標為 (x0 , x0 2 ) ,則切線方程 A

7、 為 y 2 x0 x x0 2 ,切線與 x 軸的交點坐標為 O B C x x0 x0 x0 2 2 3 1 ,0) ,則由題可知有 S 2 dx ( x 2 x x x )dx x0 ( 2 x x 0

8、 2 0 0 0 12 12 2 x0 1 ,所以切點坐標與切線方程分別為 A (1,1), y 2x 1 總結: 1、定積分的幾何意義是: 在區(qū)間 [a,b]上的曲線 y f ( x)與直線 x a 、 x b以及 x 軸 所圍成的圖形的面積的代數(shù)和, 即 b Sx軸上方 - Sx軸下方

9、 . 因此求一些曲邊圖形的面積要可 f ( x)dx a 以利用定積分的幾何意義以及微積分基本定理, 但要特別注意圖形面積與定積分不一定相等, 如函數(shù) y sin x x [0,2 ]的圖像與 x 軸圍成的圖形的面積為 4, 而其定積分為 0. 2、求曲邊梯形面積的方法與步驟: (1) 畫圖,并將圖形分割為若干個曲邊梯形; (2) 對每個曲邊梯形確定其存在的范圍,從而確定積分的上、下限; (3) 確定被積函數(shù); (4) 求出各曲邊梯形的面積

10、和,即各積分的絕對值的和。 3、幾種常見的曲邊梯形面積的計算方法: (1) x 型區(qū)域: ①由一條曲線 y f ( x)(其中 f ( x) 0)與直線 x a, x b( a b) 以及 x 軸所圍成的曲邊 b 梯形的面積: S= f ( x)dx (如圖( 1)); a ②由一條曲線 y f ( x)(其中 f ( x) 0)與直線 x a, x b( a b) 以及 x 軸所圍成的曲邊 梯形的面積: S= b b f ( x)dx=- f ( x)dx (如圖( 2)); a

11、a ③由兩條曲線 y f ( x), y g( x)(其中 f ( x) g( x))與直線 x a, x b(a b) 所圍成的曲 b f ( x)- g( x) | dx (如圖( 3)); 邊梯形的面積: S= | a y y a y y f (x) y f ( x) b x a b x y f ( x)  y g(x) b a

12、 x 圖( 1) 圖( 2) 圖( 3) (2) y 型區(qū)域: ①由一條曲線 y f ( x)( 其中 x 0 與直線 y a, y b( a b) 以及 y 軸所圍成的曲邊梯形 ) 的面積 可由 y f ( x) 得 x h( y) ,然后利用 = b h( y)dy 求出(如圖( 4)); , S a

13、 ②由一條曲線 y f ( x)(其中 x 0)與直線 y a, y b( a b) 以及 y 軸所圍成的曲邊梯形 的面積,可由 y f ( x) 先求出 x b b h( y) ,然后利用 S= h( y)dy=- h( y)dy求出(如圖( 5)); a a ③由兩條曲線 y f ( x),y g( x) 與直線 y a, y b(a b) 所圍成的曲邊梯形的面積, 可由 y f ( x), y g( x) 先分別求出

14、x h1 ( y) , x h2 ( y) ,然后利用 S b | h1( y) h2 ( y) | dy 求 = - a 出(如圖y( 6)); y y b b b y f (x) y f ( x) y f ( x) x x a y g(

15、x) x a a 圖( 4) 圖( 5) 圖( 6) (二)、定積分求旋轉體體積 例 2:求由曲線 y2 4x, x 1 所圍成的圖形繞 x軸旋轉所得旋轉體的體積。 分析:(1)分割:將旋轉體沿 x軸方向將區(qū)間 [0,1] 進行 n 等分;( 2)對區(qū)間 i 1 , i 上 n n 2 的柱體以區(qū)間右端點對應的函數(shù)值的平方數(shù) f ( i )

16、 作為底面圓半徑的平方, 以 x 1 作 n n i 2 為圓柱的高,以此圓柱體積近似代替曲邊圓柱的體積,即 Vi x ;( )求和 f ( ) 3 n n n 2 V f ( i x 趨近于 0 時,根據(jù)定積分 )x ;( 4)逼近:當分割無限變細時,即 i 1i i 1 n 1 的定義其極限即為旋轉體的體積 V= 4 xdx 。 0 1

17、 略解: V= 4xdx 2 0 (三)、定積分在物理中應用 (1) 求變速直線運動的路程 例 3、 A、 B 兩站相距 7.2km,一輛電車從 A 站 B 開往站,電車開出 ts 后到達途中 C點,這一段的速度為 1.2t(m/s) ,到 C點的速度為 24m/s,從 C 點到 B 點前的 D 點以等速行駛,從 D 點開始剎車,經(jīng) ts 后,速度為( 24-1.2t ) m/s,在 B 點恰好停車,試求 ( 1) A、C間的距離;( 2) B、 D 間的距離;( 3)電車從 A 站到 B 站所需的時間。 分析:作變速直線運動的物體所經(jīng)過的

18、路程 s, 等于其速度函數(shù) v=v(t)(v(t) ≥0) 在時間 b 區(qū)間 [a,b] 上的定積分 , 即 = S v(t) dt a 略解:( 1)設 A 到 C 的時間為 t 1 則 1.2t=24, 20 2 |20 240( m) t 1 =20(s), 則 AC= 1.2tdt 0.6t 0 0 ( 2)設 D 到 B 的時間為 t 21 則 24-1.2t 2=0, t 21=20(s),

19、 20 則 DB= (24-1.2t)dt 0.6t2 |200 240(m) 0 ( 3)CD=7200-2 240=6720(m), 則從 C到 D的時間為 280(s), 則所求時間為 20+280+20=320 ( s) (2) 、變力沿直線所作的功 問題:物體在變力 x 的作用下做直線運動, 并且物體沿著與 F(x) 相同的方向從 a 點 F( ) x= 移動到 x= b 點,則變力 F(x) b 所做的功為 : W= F ( x) dx

20、 a 例 3:如果 1N能拉長彈簧 1cm,為了將彈簧拉長 6cm,需做功( A ) A 0.18J B 0.26J C 0.12J D 0.28J 略解:設 F kx ,則由題可得 k 0.01 ,所以做功就是求定積分 6 0.18 。 0.01xdx 0 五:回顧與小結: 本節(jié)課主要學習了利用定積分求一些曲邊圖形的面積與體積,即定積分在幾何中應用, 以及定積分在物理學中的應用,要掌握幾種常見圖形面積的求法,并且要注意定積分的幾何 意義,不能等同于圖形的面積,要注意微積分的基本思想的應用與理解。 六:課外作業(yè)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!