九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高中數(shù)學 第二章 函數(shù)概念與基本初等函數(shù)I 2.2 函數(shù)的簡單性質(zhì) 2.2.1 函數(shù)的單調(diào)性2學案 蘇教版必修1

上傳人:仙*** 文檔編號:39874040 上傳時間:2021-11-12 格式:DOC 頁數(shù):5 大?。?.98MB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學 第二章 函數(shù)概念與基本初等函數(shù)I 2.2 函數(shù)的簡單性質(zhì) 2.2.1 函數(shù)的單調(diào)性2學案 蘇教版必修1_第1頁
第1頁 / 共5頁
高中數(shù)學 第二章 函數(shù)概念與基本初等函數(shù)I 2.2 函數(shù)的簡單性質(zhì) 2.2.1 函數(shù)的單調(diào)性2學案 蘇教版必修1_第2頁
第2頁 / 共5頁
高中數(shù)學 第二章 函數(shù)概念與基本初等函數(shù)I 2.2 函數(shù)的簡單性質(zhì) 2.2.1 函數(shù)的單調(diào)性2學案 蘇教版必修1_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 第二章 函數(shù)概念與基本初等函數(shù)I 2.2 函數(shù)的簡單性質(zhì) 2.2.1 函數(shù)的單調(diào)性2學案 蘇教版必修1》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 第二章 函數(shù)概念與基本初等函數(shù)I 2.2 函數(shù)的簡單性質(zhì) 2.2.1 函數(shù)的單調(diào)性2學案 蘇教版必修1(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第2課時 函數(shù)的最值 1.理解函數(shù)最值的定義,知道最值是函數(shù)定義域上的一個整體性質(zhì). 2.會求一些簡單函數(shù)的最值. 3.了解函數(shù)最值與函數(shù)單調(diào)性的關(guān)系. 1.最大值 一般地,設y=f(x)的定義域為A. 若存在定值x0∈A,使得對于任意的x∈A,都有f(x)≤f(x0)恒成立,則稱f(x0)為y=f(x)的最大值,記為ymax=f(x0). 【做一做1】函數(shù)y=-x2+5的最大值為________. 答案:5 2.最小值 一般地,設y=f(x)的定義域為A. 若存在定值x0∈A,使得對于任意的x∈A,都有f(x)≥f(x0)恒成立,則稱f(x0)為y=f(x)

2、的最小值,記為ymin=f(x0). 【做一做2】函數(shù)y=3x+1,x∈[1,4]的最小值為________. 答案:4 3.函數(shù)的最大值和最小值統(tǒng)稱為函數(shù)的最值. (1)函數(shù)的值域是指函數(shù)值的集合.函數(shù)最大(小)值一定是值域中的元素.如果值域是一個閉區(qū)間,那么函數(shù)的最大(小)值就是閉區(qū)間右(左)端點的值.(2)函數(shù)的值域和最值既有區(qū)別又有聯(lián)系.一般來講,對于圖象是連續(xù)不斷的函數(shù),知道函數(shù)在定義域上的最大值和最小值,可知函數(shù)的值域,而知道了函數(shù)的值域,不一定能確定最值. 【做一做3-1】函數(shù)y=-3x+1,x∈[-2,3]時的值域是__________. 解析:當x∈[-2,3

3、]時,ymax=-3×(-2)+1=7,ymin=-3×3+1=-8. 答案:[-8,7] 【做一做3-2】函數(shù)y=-x2-4x+1,x∈[-3,3]的值域是__________. 解析:y=-(x+2)2+5,當x=-2時,y有最大值5;當x=3時,y有最小值-20. 答案:[-20,5] 求函數(shù)最值的三種方法 剖析:(1)作出函數(shù)的圖象,從圖象直接觀察可得最值; (2)求出函數(shù)的值域,其邊界值即為最值,此時要注意邊界值能否取到(即是否存在)的問題; (3)由函數(shù)的單調(diào)性求最值. ①最大值:已知函數(shù)y=f(x)的定義域是[a,b],a<c<b,當x∈

4、[a,c]時,f(x)是單調(diào)增函數(shù);當x∈[c,b]時,f(x)是單調(diào)減函數(shù),則f(x)在x=c時取得最大值. ②最小值:已知函數(shù)y=f(x)的定義域是[a,b],a<c<b,當x∈[a,c]時,f(x)是單調(diào)減函數(shù);當x∈[c,b]時,f(x)是單調(diào)增函數(shù),則f(x)在x=c時取得最小值. 題型一 函數(shù)的最值 【例1】已知一次函數(shù)y=kx+b,當x∈[-1,3]時,ymax=5,ymin=-3.試求函數(shù)解析式. 解:若k>0, 則由條件得 解得y=2x-1. 若k<0, 則由條件得 解得y=-2x+3. 反思:因一次函數(shù)y=kx+b的單調(diào)性由k來確定,所以當x∈[m

5、,n]時,y的最值應根據(jù)k來確定,若k>0,則y∈[km+b,kn+b];若k<0,則y∈[kn+b,km+b]. 【例2】已知函數(shù)f(x)=x2-2ax+2,x∈[-1,1],求函數(shù)f(x)的最小值. 解:函數(shù)f(x)的對稱軸為x=a,且開口向上,如圖, 當a>1時,f(x)在[-1,1]上單調(diào)遞減,故f(x)min=f(1)=3-2a; 當-1≤a≤1時,f(x)在[-1,1]上先減后增,故f(x)min=f(a)=2-a2; 當a<-1時,f(x)在[-1,1]上單調(diào)遞增,故f(x)min=f(-1)=3+2a. 綜上,可知f(x)的最小值為f(x)min= 反思:求二

6、次函數(shù)在閉區(qū)間上的最值的方法:一看開口方向;二看對稱軸與區(qū)間的相對位置,簡稱“兩看法”.只需作出二次函數(shù)相關(guān)部分的簡圖,利用數(shù)形結(jié)合法就可以得到問題的解. 運用這個方法,同樣可以解決對稱軸確定而區(qū)間變化的問題,甚至開口方向、對稱軸、區(qū)間同時都在變化的問題. 題型二 含參不等式恒成立問題 【例3】已知函數(shù)f(x)=,x∈[1,+∞), (1)當a=時,求函數(shù)f(x)的最小值; (2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍. 分析:問題(1)中,由a=可確定函數(shù)解析式,由函數(shù)的單調(diào)性可確定最值;問題(2)為恒成立問題,常結(jié)合函數(shù)性質(zhì),合理構(gòu)建. 解:(1

7、)當a=時,f(x)=x++2, 設x1,x2是[1,+∞)上的任意兩個值,且x1<x2,f(x2)-f(x1)=(x2-x1), 2x1x2>2,0<<,所以1->0. 又x2-x1>0,所以f(x2)-f(x1)>0, 則f(x1)<f(x2).所以f(x)在區(qū)間[1,+∞)上為增函數(shù),則f(x)在區(qū)間[1,+∞)上的最小值為f(1)=. (2)方法一:在區(qū)間[1,+∞)上, f(x)=>0恒成立, 即x2+2x+a>0恒成立. 設y=x2+2x+a,x∈[1,+∞). 則y=(x+1)2+a-1在區(qū)間[1,+∞)上遞增, 所以當x=1時,ymin=3+a. 于是當且

8、僅當ymin=3+a>0時, 函數(shù)f(x)>0恒成立,故a>-3. 方法二:f(x)=x++2,x∈[1,+∞), 當a≥0時,函數(shù)f(x)的值恒為正, 當a<0時,函數(shù)f(x)遞增, 故當x=1時,f(x)min=3+a,于是當且僅當f(x)min=3+a>0時,函數(shù)f(x)>0恒成立,故a>-3. 反思:求函數(shù)的最值,先求函數(shù)的定義域.函數(shù)的最值及值域經(jīng)常與函數(shù)的單調(diào)性聯(lián)系在一起,所以有時先求函數(shù)單調(diào)性再根據(jù)單調(diào)性求函數(shù)最值. 不等式f(x)≥a恒成立的條件是f(x)min≥a,f(x)≤a恒成立的條件是f(x)max≤a. 題型三 最值的應用 【例4】某工廠擬建造一座

9、平面圖如圖所示為矩形且面積為200平方米的三級污水處理池,由于地形限制,長、寬都不能超過16米.如果池外周壁建造單價為每米400元,中間兩條隔墻建造單價為每米248元,池底建造單價為每平方米80元(池壁的厚度忽略不計,且無池蓋).求污水處理池的長和寬各為多少米時,總造價最低?并求出最低總造價. 解:設污水處理池的長為x米,0<x≤16, 則寬為米,0<≤16. 根據(jù)題意,總造價為y=400×2×+248×2×+80×200=800×+16 000. 由得定義域為[12.5,16]. ∵函數(shù)y=800×+16 0

10、00在[12.5,16]上是單調(diào)減函數(shù),∴當x=16時,y取最小值為45 000. 故當污水處理池的長為16米,寬為12.5米時,總造價最低,最低總造價為45 000元. 反思:在利用函數(shù)的單調(diào)性處理有關(guān)實際問題的最值時,一定要注意函數(shù)的定義域要使實際問題有意義. 1函數(shù)f(x)=3x+a,x∈[-1,2]的最大值與最小值的差為__________. 解析:由題意知f(x)為增函數(shù),最大值與最小值的差為f(2)-f(-1)=3×2+a-3×(-1)-a=9. 答案:9 2函數(shù)f(x)=的值域是__________. 解析:因為1-x(1-x)=x2-x+1

11、=+≥,從而f(x)max=. 又f(x)>0,所以f(x)的值域是. 答案: 3以墻為一邊,用籬笆圍成長方形的場地,并用平行于一邊的籬笆隔開(如圖),已知籬笆總長為定值L,寫出場地面積y為一邊長x的函數(shù), 并求出函數(shù)的定義域及面積的最大值. 解:根據(jù)題意,可得y=(L-3x)x, 由題意知解得0<x<. ∴函數(shù)y=(L-3x)x的定義域為. ∵y=(L-3x)x=-3x2+Lx =-3+. ∴當x=時,ymax=. 4若不等式|x-2|+|x+3|≥a恒成立,求實數(shù)a的取值范圍. 解:由f(x)=|x-2|+|x+3| = 得其圖象如圖所示, 所以f(x)

12、min=5,從而a∈(-∞,5]. 5已知f(x)=x2-4x+3,求函數(shù)在區(qū)間[t,t+2]上的最值. 解:f(x)=x2-4x+3=(x-2)2-1,作出如圖所示的圖象, 圖象的對稱軸為x=2. ①當t+2<2,即t<0時,f(x)在區(qū)間[t,t+2]上單調(diào)遞減, 所以f(x)max=f(t)=t2-4t+3, f(x)min=f(t+2)=t2-1; ②當2≤t+2<3,即0≤t<1時, f(x)max=f(t)=t2-4t+3,f(x)min=f(2)=-1. ③當3≤t+2<4,即1≤t<2時, 同上可知f(x)min=f(2)=-1, f(x)max=f(t+2)=t2-1. ④當t+2≥4,即t≥2時,f(x)在區(qū)間[t,t+2]上單調(diào)遞增,所以f(x)min=f(t)=t2-4t+3, f(x)max=f(t+2)=t2-1. 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!