九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2017-2018學(xué)年度高中數(shù)學(xué) 第二章 圓錐曲線(xiàn)與方程能力深化提升【含解析】新人教A版選修1-1

上傳人:無(wú)*** 文檔編號(hào):24303435 上傳時(shí)間:2021-06-27 格式:DOC 頁(yè)數(shù):9 大小:922.55KB
收藏 版權(quán)申訴 舉報(bào) 下載
2017-2018學(xué)年度高中數(shù)學(xué) 第二章 圓錐曲線(xiàn)與方程能力深化提升【含解析】新人教A版選修1-1_第1頁(yè)
第1頁(yè) / 共9頁(yè)
2017-2018學(xué)年度高中數(shù)學(xué) 第二章 圓錐曲線(xiàn)與方程能力深化提升【含解析】新人教A版選修1-1_第2頁(yè)
第2頁(yè) / 共9頁(yè)
2017-2018學(xué)年度高中數(shù)學(xué) 第二章 圓錐曲線(xiàn)與方程能力深化提升【含解析】新人教A版選修1-1_第3頁(yè)
第3頁(yè) / 共9頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2017-2018學(xué)年度高中數(shù)學(xué) 第二章 圓錐曲線(xiàn)與方程能力深化提升【含解析】新人教A版選修1-1》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2017-2018學(xué)年度高中數(shù)學(xué) 第二章 圓錐曲線(xiàn)與方程能力深化提升【含解析】新人教A版選修1-1(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 第二章 圓錐曲線(xiàn)與方程 能力深化提升 類(lèi)型一 圓錐曲線(xiàn)的定義及應(yīng)用 【典例1】(2017日照高二檢測(cè))如圖所示,已知定圓F1:(x+5)2+y2=1,定圓F2:(x-5)2+y2=42,動(dòng)圓M與定圓F1,F2都外切,求動(dòng)圓圓心M的軌跡方程. 【解析】圓F1:(x+5)2+y2=1,圓心F1(-5,0),半徑r1=1; 圓F2:(x-5)2+y2=42, 圓心F2(5,0),半徑r2=4. 設(shè)動(dòng)圓M的半徑為R, 則有|MF1|=R+1,|MF2|=R+4, 所以|MF2|-|MF1|=3<10=|F1F2|. 所以點(diǎn)M的軌跡是以F1,F2為焦點(diǎn)的雙曲線(xiàn)的左支,且a=3

2、2,c=5,于是b2=c2-a2=914. 所以動(dòng)圓圓心M的軌跡方程為x294-y2914=1x≤-32. 【方法總結(jié)】圓錐曲線(xiàn)定義的應(yīng)用技巧 (1)在求點(diǎn)的軌跡問(wèn)題時(shí),若所求軌跡符合圓錐曲線(xiàn)的定義,則根據(jù)其直接寫(xiě)出圓錐曲線(xiàn)的軌跡方程. (2)焦點(diǎn)三角形問(wèn)題,在橢圓和雙曲線(xiàn)中,常涉及曲線(xiàn)上的點(diǎn)與兩焦點(diǎn)連接而成的“焦點(diǎn)三角形”,處理時(shí)常結(jié)合圓錐曲線(xiàn)的定義及解三角形的知識(shí)解決. (3)在拋物線(xiàn)中,常利用定義,以達(dá)到“到焦點(diǎn)的距離”和“到準(zhǔn)線(xiàn)的距離”的相互轉(zhuǎn)化. 【鞏固訓(xùn)練】已知A(0,7),B(0,-7),C(12,2),以C為一個(gè)焦點(diǎn)作過(guò)A,B的橢圓,求橢圓的另一個(gè)焦點(diǎn)F的軌跡方程.

3、 【解析】|AC|=13,|BC|=15,|AB|=14,又|AF|+|AC|=|BF|+|BC|,所以|AF|-|BF|=|BC|-|AC|=2,故F點(diǎn)的軌跡是以A,B為焦點(diǎn),實(shí)軸長(zhǎng)為2的雙曲線(xiàn),又c=7,a=1,b2=48,故F點(diǎn)的軌跡方程是y2-x248=1(y≤-1). 類(lèi)型二 圓錐曲線(xiàn)的性質(zhì)及應(yīng)用 【典例2】(1)設(shè)P為直線(xiàn)y=b3ax與雙曲線(xiàn)x2a2-y2b2=1(a>0,b>0)左支的交點(diǎn),F1是左焦點(diǎn),PF1垂直于x軸,則雙曲線(xiàn)的離心率e=________. (2)(2017沈陽(yáng)高二檢測(cè))已知橢圓C:x2a2+y2b2=1(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線(xiàn)相交

4、于A,B兩點(diǎn),連接AF,BF.若|AB|=10,|AF|=6,cos∠ABF=45,則C的離心率e=________. 【解析】(1)由PF1⊥x軸知P-c,-bc3a,把P代入雙曲線(xiàn)得: c2a2--bc3a2b2=1,整理得89e2=1, 所以e2=98,e=324. 答案:324 (2)在△ABF中,由余弦定理得, cos∠ABF=|AB|2+|BF|2-|AF|22|AB||BF|, 所以|BF|2-16|BF|+64=0,所以|BF|=8. 設(shè)右焦點(diǎn)為F1,因?yàn)橹本€(xiàn)過(guò)原點(diǎn),所以|BF1|=|AF|=6, 所以2a=|BF|+|BF1|=14,所以a=7, 因?yàn)閨A

5、B|=10,|BF|=8,|AF|=6, 所以△ABF是以∠AFB為直角的直角三角形. 因?yàn)镺為Rt△ABF斜邊AB的中點(diǎn), 所以|OF|=12|AB|=5,所以c=5,所以e=57. 答案:57 【方法總結(jié)】求離心率的兩種常用方法 (1)求得a,c的值,直接代入公式e=ca求得. (2)列出關(guān)于a,b,c的齊次方程(或不等式),然后根據(jù)a,b,c的關(guān)系消去b,轉(zhuǎn)化成關(guān)于e的方程(或不等式)求解. 【鞏固訓(xùn)練】已知F1為橢圓的左焦點(diǎn),A,B分別為橢圓的右頂點(diǎn)和上頂點(diǎn),P為橢圓上的點(diǎn),當(dāng)PF1⊥F1A,PO∥AB(O為橢圓中心)時(shí),求橢圓的離心率. 【解析】由已知可設(shè)橢圓的方程

6、為x2a2+y2b2=1(a>b>0),c2=a2-b2,F1(-c,0),因?yàn)镻F1⊥F1A, 所以P-c,b1-c2a2, 即P-c,b2a,因?yàn)锳B∥PO,所以kAB=kOP, 即-ba=-b2ac,所以b=c,所以a2=2c2, 所以e=ca=22. 類(lèi)型三 直線(xiàn)與圓錐曲線(xiàn) 【典例3】已知雙曲線(xiàn)C:2x2-y2=2與點(diǎn)P(1,2),求過(guò)點(diǎn)P(1,2)的直線(xiàn)l的斜率的取值范圍,使l與C分別有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),沒(méi)有公共點(diǎn). 【解析】(1)當(dāng)l垂直于x軸時(shí),直線(xiàn)與雙曲線(xiàn)相切,有一個(gè)公共點(diǎn). (2)當(dāng)l不與x軸垂直時(shí),設(shè)直線(xiàn)l為y-2=k(x-1),代入雙曲線(xiàn)方程中,有(

7、2-k2)x2+2(k2-2k)x-k2+4k-6=0. 當(dāng)k2=2時(shí),即k=2時(shí),有一個(gè)解. 當(dāng)k2≠2時(shí),Δ=4(k2-2k)2-4(2-k2)(-k2+4k-6) =48-32k. 令Δ=0可得k=32. 令Δ>0,即48-32k>0,此時(shí)k<32. 令Δ<0,即48-32k<0,此時(shí)k>32. 所以當(dāng)k=2,或k=32,或k不存在時(shí),直線(xiàn)與雙曲線(xiàn)只有一個(gè)公共點(diǎn); 當(dāng)k<-2,或-232時(shí),直線(xiàn)l與雙曲線(xiàn)沒(méi)有公共點(diǎn). 【方法總結(jié)】直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系的關(guān)注點(diǎn) (1)直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系的研究可以

8、轉(zhuǎn)化為相應(yīng)方程組的解的討論,即聯(lián)立得方程組Ax+By+C=0,f(x,y)=0,通過(guò)消去y(也可以消去x)得到有關(guān)x的方程ax2+bx+c=0進(jìn)行討論.這時(shí)要注意考慮a=0和a≠0兩種情況,對(duì)雙曲線(xiàn)和拋物線(xiàn)而言,一個(gè)公共點(diǎn)的情況除a≠0,Δ=0外,直線(xiàn)與雙曲線(xiàn)的漸近線(xiàn)平行或直線(xiàn)與拋物線(xiàn)的對(duì)稱(chēng)軸平行或重合時(shí),都只有一個(gè)公共點(diǎn)(此時(shí)直線(xiàn)與雙曲線(xiàn)、拋物線(xiàn)屬相交情況). (2)求圓錐曲線(xiàn)被直線(xiàn)所截弦長(zhǎng)常用的方法是設(shè)而不求,結(jié)合根與系數(shù)的關(guān)系,利用弦長(zhǎng)公式求弦長(zhǎng). (3)弦長(zhǎng)公式|P1P2|=1+k2(x1+x2)2-4x1x2或 |P1P2|=1+1k2(y1+y2)2-4y1y2. 【鞏固訓(xùn)

9、練】已知直線(xiàn)y=-12x+2和橢圓x2a2+y2b2=1(a>b>0)相交于A,B兩點(diǎn),M為AB的中點(diǎn),若|AB|=25,直線(xiàn)OM的斜率為12(O為坐標(biāo)原點(diǎn)),求橢圓的方程. 【解析】由y=-12x+2,x2a2+y2b2=1, 消去y,整理得(a2+4b2)x2-8a2x+16a2-4a2b2=0. 設(shè)A(x1,y1),B(x2,y2), 則由根與系數(shù)的關(guān)系, 得x1+x2=8a2a2+4b2,x1x2=16a2-4a2b2a2+4b2. 又設(shè)AB的中點(diǎn)M(xM,yM), 則xM=x1+x22=4a2a2+4b2,yM=-12xM+2=8b2a2+4b2. 因?yàn)橹本€(xiàn)OM的斜率

10、kOM=yMxM=12, 所以2b2a2=12,所以a2=4b2, 從而x1+x2=8a2a2+4b2=4,x1x2=16a2-4a2b2a2+4b2=8-2b2. 又因?yàn)閨AB|=25, 所以1+14(x1+x2)2-4x1x2=25, 即5216-4(8-2b2)=25,解得b2=4, 所以a2=4b2=16, 故所求橢圓的方程為x216+y24=1. 類(lèi)型四 圓錐曲線(xiàn)中的最值與范圍問(wèn)題 【典例4】(2017馬鞍山高二檢測(cè))已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為63,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為3. (1)求橢圓C的方程. (2)設(shè)直線(xiàn)l與橢圓C交

11、于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為32,求△AOB面積的最大值. 【解析】(1)設(shè)橢圓的半焦距為c, 依題意有ca=63,a=3,所以c=2,b=a2-c2=1. 所以所求橢圓方程為x23+y2=1. (2)設(shè)A(x1,y1),B(x2,y2). ①當(dāng)AB⊥x軸時(shí),|AB|=3. ②當(dāng)AB與x軸不垂直時(shí),設(shè)直線(xiàn)AB的方程為y=kx+m. 由已知|m|1+k2=32,得m2=34(k2+1). 把y=kx+m代入橢圓方程,整理得 (3k2+1)x2+6kmx+3m2-3=0, 所以x1+x2=-6km3k2+1,x1x2=3(m2-1)3k2+1. 所以|AB|2=(

12、1+k2)(x2-x1)2=(1+k2)[(x1+x2)2-4x1x2] =(1+k2)36k2m2(3k2+1)2-12(m2-1)3k2+1 =12(k2+1)(3k2+1-m2)(3k2+1)2=3(k2+1)(9k2+1)(3k2+1)2 =3+12k29k4+6k2+1=3+129k2+1k2+6(k≠0) ≤3+1223+6=4. 所以|AB|≤2,故△ABO的面積最大值為12|AB|h=12232=32. 【方法總結(jié)】解決圓錐曲線(xiàn)最值(范圍)問(wèn)題的思路 (1)幾何法:若題目條件與結(jié)論有明顯的幾何特征、幾何意義,常結(jié)合圖形的性質(zhì)尋求解題思路.這種方法常常較為簡(jiǎn)捷.

13、(2)代數(shù)法:題設(shè)條件和結(jié)論中存在函數(shù)關(guān)系,可以建立起目標(biāo)函數(shù),轉(zhuǎn)化為函數(shù)求最值的問(wèn)題.常用的方法有二次函數(shù)在閉區(qū)間上最值的求法、判別式法、函數(shù)的單調(diào)性、基本不等式等.解題時(shí)要注意自變量的取值范圍對(duì)最值的影響. 【鞏固訓(xùn)練】(2017濟(jì)南高二檢測(cè))設(shè)拋物線(xiàn)y2=2px(p>0)上有兩動(dòng)點(diǎn)A,B(直線(xiàn)AB不垂直于x軸),F為焦點(diǎn)且|AF|+|BF|=8,又線(xiàn)段AB的垂直平分線(xiàn)恒過(guò)定點(diǎn)Q(6,0),求: (1)拋物線(xiàn)的方程. (2)△AQB的面積的最大值. 【解析】(1)設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)為M(x0,y0),則|AF|=x1+p2,|BF|=x2+p2, 所

14、以|AF|+|BF|=x1+x2+p=8,即p+2x0=8.?、? 由y12=2px1,y22=2px2,得y12-y22=2p(x1-x2), 所以y1-y2x1-x2=2py1+y2. 因?yàn)镸Q垂直平分AB,所以kMQ=-y0p,又kMQ=y0x0-6, 所以-y0p=y0x0-6,所以p=6-x0.?、? 由①②得x0=2,p=4,故拋物線(xiàn)的方程為y2=8x. (2)由(1)知kAB=4y0,M(2,y0), 所以AB的方程為y-y0=4y0(x-2), 代入y2=8x,得y2-2y0y+2y02-16=0, 由Δ>0得-4

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!