九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點1 三角函數(shù)問題用書 理-人教高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:240690819 上傳時間:2024-04-30 格式:DOC 頁數(shù):14 大?。?62KB
收藏 版權(quán)申訴 舉報 下載
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點1 三角函數(shù)問題用書 理-人教高三數(shù)學(xué)試題_第1頁
第1頁 / 共14頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點1 三角函數(shù)問題用書 理-人教高三數(shù)學(xué)試題_第2頁
第2頁 / 共14頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點1 三角函數(shù)問題用書 理-人教高三數(shù)學(xué)試題_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點1 三角函數(shù)問題用書 理-人教高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題1 突破點1 三角函數(shù)問題用書 理-人教高三數(shù)學(xué)試題(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題一 三角函數(shù)與平面向量         建知識網(wǎng)絡(luò) 明內(nèi)在聯(lián)系    高考點撥] 三角函數(shù)與平面向量是高考的高頻考點,常以“兩小一大”的形式呈現(xiàn),兩小題主要考查三角函數(shù)的圖象和性質(zhì)與平面向量內(nèi)容,一大題常考查解三角形內(nèi)容,有時平面向量還與圓錐曲線、線性規(guī)劃等知識相交匯.本專題按照“三角函數(shù)問題”“解三角形”“平面向量”三條主線分門別類進(jìn)行備考. 突破點1 三角函數(shù)問題 提煉1 三角函數(shù)的圖象問題 (1)函數(shù)y=Asin(ωx+φ)解析式的確定:利用函數(shù)圖象的最高點和最低點確定A,利用周期確定ω,利用圖象的某一已知點坐標(biāo)確定φ. (2)三角函數(shù)圖象的兩種常見變換

2、 提煉2 三角函數(shù)奇偶性與對稱性 (1)y=Asin(ωx+φ),當(dāng)φ=kπ(k∈Z)時為奇函數(shù);當(dāng)φ=kπ+(k∈Z)時為偶函數(shù);對稱軸方程可由ωx+φ=kπ+(k∈Z)求得,對稱中心的橫坐標(biāo)可由ωx+φ=kπ,(k∈Z)解得. (2)y=Acos(ωx+φ),當(dāng)φ=kπ+(k∈Z)時為奇函數(shù);當(dāng)φ=kπ(k∈Z)時為偶函數(shù);對稱軸方程可由ωx+φ=kπ(k∈Z)求得,對稱中心的橫坐標(biāo)可由ωx+φ=kπ+(k∈Z)解得. y=Atan(ωx+φ),當(dāng)φ=kπ(k∈Z)時為奇函數(shù);對稱中心的橫坐標(biāo)可由ωx+φ=(k∈Z)解得,無對稱軸. 提煉3 三角變換常用技巧 (1)常值代換

3、:特別是“1”的代換,1=sin2θ+cos2θ=tan 45°等. (2)項的分拆與角的配湊:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次與升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦. 提煉4 三角函數(shù)最值問題 (1)y=asin x+bcos x+c型函數(shù)的最值:可將y轉(zhuǎn)化為y=sin(x+φ)+c其中tan φ=的形式,這樣通過引入輔助角φ可將此類函數(shù)的最值問題轉(zhuǎn)化為y=sin(x+φ)+c的最值問題,然后利用三角函數(shù)的圖象和性質(zhì)求解. (2)y=asin2x+bsin xcos

4、x+ccos2x型函數(shù)的最值:可利用降冪公式sin2x=,sin xcos x=,cos2x=,將y=asin2x+bsin xcos x+ccos2x轉(zhuǎn)化整理為y=Asin 2x+Bcos 2x+C,這樣就可將其轉(zhuǎn)化為(1)的類型來求最值. 回訪1 三角函數(shù)的圖象問題 1.(2016·全國甲卷)若將函數(shù)y=2sin 2x的圖象向左平移個單位長度,則平移后圖象的對稱軸為(  ) A.x=-(k∈Z)   B.x=+(k∈Z) C.x=-(k∈Z) D.x=+(k∈Z) B 將函數(shù)y=2sin 2x的圖象向左平移個單位長度,得到函數(shù)y=2sin 2=2sin的圖象.由2x+=k

5、x+(k∈Z),得x=+(k∈Z),即平移后圖象的對稱軸為x=+(k∈Z).] 2.(2014·全國卷Ⅰ) 圖1-1 如圖1-1,圓O的半徑為1,A是圓上的定點,P是圓上的動點,角x的始邊為射線OA,終邊為射線OP,過點P作直線OA的垂線,垂足為M.將點M到直線OP的距離表示成x的函數(shù)f(x),則y=f(x)在0,π]的圖象大致為(  ) B 如圖所示,當(dāng)x∈時,則P(cos x,sin x),M(cos x,0),作MM′⊥OP,M′為垂足,則=sin x, ∴=sin x,∴f(x)=sin xcos x=sin 2x, 則當(dāng)x=時,f(x)max=; 當(dāng)x∈時,

6、有=sin(π-x), f(x)=-sin xcos x=-sin 2x, 當(dāng)x=時,f(x)max=. 只有B選項的圖象符合.] 回訪2 三角函數(shù)的性質(zhì)問題 3.(2015·全國卷Ⅰ)函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖1-2所示,則f(x)的單調(diào)遞減區(qū)間為(  ) 圖1-2 A.,k∈Z B.,k∈Z C.,k∈Z D.,k∈Z D 由圖象知,周期T=2=2, ∴=2,∴ω=π. 由π×+φ=+2kπ,k∈Z,不妨取φ=, ∴f(x)=cos. 由2kπ<πx+<2kπ+π,k∈Z,得2k-

7、∈Z.故選D.] 4.(2016·全國乙卷)已知函數(shù)f(x)=sin(ωx+φ),x=-為f(x)的零點,x=為y=f(x)圖象的對稱軸,且f(x)在上單調(diào),則ω的最大值為(  ) A.11    B.9 C.7    D.5 B 因為f(x)=sin(ωx+φ)的一個零點為x=-,x=為y=f(x)圖象的對稱軸, 所以·k=(k為奇數(shù)). 又T=,所以ω=k(k為奇數(shù)). 又函數(shù)f(x)在上單調(diào), 所以≤×,即ω≤12. 若ω=11,又|φ|≤,則ω=-,此時,f(x)=sin,f(x)在上單調(diào)遞增,在上單調(diào)遞減,不滿足條件. 若ω=9,又|φ|≤,則φ=,此時,f(

8、x)=sin,滿足f(x)在上單調(diào)的條件.故選B.] 5.(2013·全國卷Ⅰ)設(shè)當(dāng)x=θ時,函數(shù)f(x)=sin x-2cos x取得最大值,則cos θ=________. - ∵f(x)=sin x-2cos x=, 設(shè)=cos α,=sin α, 則y=(sin xcos α-cos xsin α)=sin(x-α). ∵x∈R,∴x-α∈R,∴ymax=. 又∵x=θ時,f(x)取得最大值, ∴f(θ)=sin θ-2cos θ=. 又sin2θ+cos2θ=1, ∴即cos θ=-.] 回訪3 三角恒等變換 6.(2015·全國卷Ⅰ)sin 20°cos 10

9、°-cos 160°sin 10°=(  ) A.-    B. C.-    D. D sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=,故選D.] 7.(2016·全國甲卷)若cos=,則sin 2α=(  ) A. B. C.- D.- D 因為cos=, 所以sin 2α=cos=cos 2=2cos2-1=2×-1=-.] 熱點題型1 三角函數(shù)的圖象問題 題型分析:高考對該熱點的考查方式主要體現(xiàn)在以下兩方面:一是考查三角函數(shù)解析式的求

10、法;二是考查三角函數(shù)圖象的平移變換,常以選擇、填空題的形式考查,難度較低.  (1)(2016·山西四校聯(lián)考)將函數(shù)y=cos x+sin x(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是(  ) A.     B.     C.     D. (2)(2016·衡水中學(xué)四調(diào))已知A,B,C,D是函數(shù)y=sin(ωx+φ)一個周期內(nèi)的圖象上的四個點,如圖1-3所示,A,B為y軸上的點,C為圖象上的最低點,E為該圖象的一個對稱中心,B與D關(guān)于點E對稱,在x軸上的投影為,則(  ) 圖1-3 A.ω=2,φ= B.ω=2,φ= C.

11、ω=,φ= D.ω=,φ= (1)A (2)A (1)設(shè)f(x)=cos x+sin x=2=2sin,向左平移m個單位長度得g(x)=2sin.∵g(x)的圖象關(guān)于y軸對稱,∴g(x)為偶函數(shù),∴+m=+kπ(k∈Z),∴m=+kπ(k∈Z),又m>0,∴m的最小值為. (2)由題意可知=+=,∴T=π,ω==2.又sin=0,0<φ<,∴φ=,故選A.] 1.函數(shù)y=Asin(ωx+φ)的解析式的確定 (1)A由最值確定,A=; (2)ω由周期確定; (3)φ由圖象上的特殊點確定. 提醒:根據(jù)“五點法”中的零點求φ時,一般先依據(jù)圖象的升降分清零點的類型. 2.在圖象

12、變換過程中務(wù)必分清是先相位變換,還是先周期變換.變換只是相對于其中的自變量x而言的,如果x的系數(shù)不是1,就要把這個系數(shù)提取后再確定變換的單位長度和方向. 變式訓(xùn)練1] (1)為了得到函數(shù)y=sin的圖象,可以將函數(shù)y=cos 2x的圖象(  ) 【導(dǎo)學(xué)號:85952009】 A.向右平移個單位長度 B.向右平移個單位長度 C.向左平移個單位長度 D.向左平移個單位長度 (2)(2016·江西八校聯(lián)考)函數(shù)f(x)=Asin ωx(A>0,ω>0)的部分圖象如圖1-4所示,則f(1)+f(2)+f(3)+…+f(2 016)的值為(  ) 圖1-4 A.0    B.3 

13、   C.6    D.- (1)B (2)A (1)∵y=cos 2x=sin,∴y=cos 2x的圖象向右平移個單位長度,得y=sin=sin的圖象.故選B. (2)由題圖可得,A=2,T=8,=8,ω=, ∴f(x)=2sinx. ∴f(1)=,f(2)=2,f(3)=,f(4)=0,f(5)=-,f(6)=-2,f(7)=-,f(8)=0, 而2 016=8×252, ∴f(1)+f(2)+…+f(2 016)=0.] 熱點題型2 三角函數(shù)的性質(zhì)問題 題型分析:三角函數(shù)的性質(zhì)涉及周期性、單調(diào)性以及最值、對稱性等,是高考的重要命題點之一,常與三角恒等變換交匯命題,難度中

14、等.  (2016·天津高考)已知函數(shù)f(x)=4tan x·sin·cos-. (1)求f(x)的定義域與最小正周期; (2)討論f(x)在區(qū)間上的單調(diào)性. 解] (1)f(x)的定義域為xx≠+kπ,k∈Z.1分 f(x)=4tan xcos xcos- =4sin xcos- =4sin x- =2sin xcos x+2sin2x- =sin 2x+(1-cos 2x)- =sin 2x-cos 2x=2sin.4分 所以f(x)的最小正周期T==π.6分 (2)令z=2x-,則函數(shù)y=2sin z的單調(diào)遞增區(qū)間是,k∈Z. 由-+2kπ≤2x-≤+2kπ,

15、 得-+kπ≤x≤+kπ,k∈Z.8分 設(shè)A=,B=x-+kπ≤x≤+kπ,k∈Z,易知A∩B=.10分 所以當(dāng)x∈時,f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.12分 研究函數(shù)y=Asin(ωx+φ)的性質(zhì)的“兩種”意識 1.轉(zhuǎn)化意識:利用三角恒等變換把待求函數(shù)化成y=Asin(ωx+φ)+B的形式. 2.整體意識:類比于研究y=sin x的性質(zhì),只需將y=Asin(ωx+φ)中的“ωx+φ”看成y=sin x中的“x”代入求解便可. 變式訓(xùn)練2] (1)(名師押題)已知函數(shù)f(x)=2sin,把函數(shù)f(x)的圖象沿x軸向左平移個單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x

16、),下列說法正確的是(  ) A.在上是增函數(shù) B.其圖象關(guān)于直線x=-對稱 C.函數(shù)g(x)是奇函數(shù) D.當(dāng)x∈時,函數(shù)g(x)的值域是-2,1] (2)已知函數(shù)f(x)=-2sin(2x+φ)(|φ|<π),若是f(x)的一個單調(diào)遞增區(qū)間,則φ的取值范圍為(  ) 【導(dǎo)學(xué)號:85952010】 A. B. C. D.∪ (1)D (2)C (1)因為f(x)=2sin,把函數(shù)f(x)的圖象沿x軸向左平移個單位,得g(x)=f=2sin=2sin=2cos 2x. 對于A,由x∈可知2x∈,故g(x)在上是減函數(shù),故A錯;又g=2cos=0,故x=-不是g(x)的對稱軸

17、,故B錯;又g(-x)=2cos 2x=g(x),故C錯;又當(dāng)x∈時,2x∈,故g(x)的值域為-2,1],D正確. (2)令2kπ+<2x+φ<2kπ+,k∈Z, 所以kπ+-≤x≤kπ+-,k∈Z, 所以函數(shù)f(x)在上單調(diào)遞增. 因為是f(x)的一個單調(diào)遞增區(qū)間, 所以≤kπ+-,且kπ+-≤,k∈Z, 解得2kπ+≤φ≤2kπ+,k∈Z,又|φ|<π,所以≤φ≤.故選C.] 熱點題型3 三角恒等變換 題型分析:高考對該熱點的考查方式主要體現(xiàn)在以下兩個方面:一是直接利用和、差、倍、半角公式對三角函數(shù)式化簡求值;二是以三角恒等變換為載體,考查y=Asin(ωx+φ)的有關(guān)性

18、質(zhì).  (1)(2016·江西八校聯(lián)考)如圖1-5,圓O與x軸的正半軸的交點為A,點C,B在圓O上,且點C位于第一象限,點B的坐標(biāo)為,∠AOC=α,若|BC|=1,則cos2-sincos -的值為________. 圖1-5 (2)已知函數(shù)f(x)=sin2-cos2+2sin·cos+λ的圖象經(jīng)過點,則函數(shù)f(x)在區(qū)間上的最大值為________. (1) (2)- (1)由題意可知|OB|=|BC|=1,∴△OBC為正三角形. 由三角函數(shù)的定義可知,sin∠AOB=sin=, ∴cos2-sincos-=--=cos α-sin α=sin=. (2)f(x)=sin

19、2-cos2+2sin·cos +λ=-cos+sin+λ=2sin+λ. 由f(x)的圖象過點,得λ=-2sin=-2sin=-, 故f(x)=2sin-. 因為0≤x≤,所以-≤-≤. 因為y=sin x在上單調(diào)遞增, 所以f(x)的最大值為f=2sin-=-.] 1.解決三角函數(shù)式的化簡求值要堅持“三看”原則:一看“角”,通過看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分;二是“函數(shù)名稱”,是需進(jìn)行“切化弦”還是“弦化切”等,從而確定使用的公式;三看“結(jié)構(gòu)特征”,了解變式或化簡的方向. 2.在研究形如f(x)=asin ωx+bcos ωx的函數(shù)的性質(zhì)時,通常利用輔助角公式a

20、sin x+bcos x=·sin(x+φ)把函數(shù)f(x)化為Asin(ωx+φ)的形式,通過對函數(shù)y=Asin(ωx+φ)性質(zhì)的研究得到f(x)=asin ωx+bcos ωx的性質(zhì). 變式訓(xùn)練3] (1)(2014·全國卷Ⅰ)設(shè)α∈,β∈,且tan α=,則(  ) A.3α-β= B.2α-β= C.3α+β= D.2α+β= (2)已知sin+sin α=-,-<α<0,則cos等于(  ) A.- B.- C. D. (1)B (2)C (1)法一:由tan α=得=, 即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin. ∵α∈,β∈, ∴α-β∈,-α∈, 由sin(α-β)=sin,得α-β=-α, ∴2α-β=. 法二:tan α== = =cot =tan =tan, ∴α=kπ+,k∈Z, ∴2α-β=2kπ+,k∈Z. 當(dāng)k=0時,滿足2α-β=,故選B. (2)∵sin+sin α=-,-<α<0, ∴sin α+cos α=-, ∴sin α+cos α=-, ∴cos=cos αcos -sin αsin =-cos α-sin α=.]

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!