九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點1 三角函數(shù)問題專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:238068145 上傳時間:2023-12-26 格式:DOC 頁數(shù):12 大?。?32.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點1 三角函數(shù)問題專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題_第1頁
第1頁 / 共12頁
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點1 三角函數(shù)問題專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題_第2頁
第2頁 / 共12頁
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點1 三角函數(shù)問題專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題_第3頁
第3頁 / 共12頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點1 三角函數(shù)問題專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點1 三角函數(shù)問題專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(xùn)(一) 三角函數(shù)問題 [建議A、B組各用時:45分鐘] [A組 高考達標] 一、選擇題 1.(2016·泰安模擬)函數(shù)f(x)=sin(2x+φ)的圖象向左平移個單位后關(guān)于原點對稱,則函數(shù)f(x)在上的最小值為(  ) 【導(dǎo)學(xué)號:67722010】 A.-    B.-    C.    D. A [函數(shù)f(x)=sin(2x+φ)向左平移個單位得y=sin =sin ,又其為奇函數(shù),故+φ=kπ,π∈Z,解得φ=kπ-,又|φ|<,令k=0,得φ=-, ∴f(x)=sin . 又∵x∈, ∴2x-∈,∴sin∈, 當(dāng)x=0時,f(x)min=-,故選A.]

2、 2.(2016·河南八市聯(lián)考)已知函數(shù)f(x)=sin x-cos x,且f′(x)=f(x),則tan 2x的值是(  ) A.-    B.-    C.    D. D [因為f′(x)=cos x+sin x=sin x-cos x,所以tan x=-3,所以tan 2x===,故選D.] 3.(2016·全國甲卷)函數(shù)f(x)=cos 2x+6cos的最大值為(  ) A.4 B.5 C.6 D.7 B [∵f(x)=cos 2x+6cos =cos 2x+6sin x =1-2sin2x+6sin x=-22+, 又sin x∈[-1,1],∴當(dāng)si

3、n x=1時,f(x)取得最大值5.故選B.] 4.(2016·鄭州模擬)函數(shù)f(x)=2sin(ωx+φ)的部分圖象如圖1-6所示,則f(0)+f的值為(  ) 圖1-6 A.2- B.2+ C.1- D.1+ A [由函數(shù)f(x)的圖象得函數(shù)f(x)的最小正周期為T==4=π,解得ω=2,則f(x)=2sin(2x+φ).又因為函數(shù)圖象經(jīng)過點-,-2,所以f-=2sin=-2,則2×+φ=-+2kπ,k∈Z,解得φ=-+2kπ,k∈Z.又因為|φ|<,所以φ=-,則f(x)=2sin,所以f(0)+f=2sin+2sin=2sin+2sin=-+2,故選A.] 5.(201

4、6·石家莊二模)設(shè)α,β∈[0,π],且滿足sin αcos β-cos αsin β=1,則sin(2α-β)+sin(α-2β)的取值范圍為(  ) A.[-1,1] B.[-1,] C.[-,1] D.[1,] A [由sin αcos β-cos αsin β=sin(α-β)=1,α,β∈[0,π],得α-β=,β=α-∈[0,π]?α∈,且sin(2α-β)+sin(α-2β)=sin+sin(π-α)=cos α+sin α=sin,α∈?α+∈?sin∈?sin∈[-1,1],故選A.] 二、填空題 6.(2016·合肥三模)已知tan α=2,則sin2-sin(3

5、π+α)cos(2π-α)=________. 【導(dǎo)學(xué)號:67722011】  [∵tan α=2, ∴sin2-sin(3π+α)cos(2π-α) =cos2α+sin αcos α = = = =.] 7.(2016·蘭州模擬)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖1-7所示,△EFG(點G在圖象的最高點)是邊長為2的等邊三角形,則f(1)=________. 圖1-7 - [由函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)是奇函數(shù)可得φ=,則f(x)=Acos=-Asin ωx(A>

6、0,ω>0).又由△EFG是邊長為2的等邊三角形可得A=,最小正周期T=4=,ω=,則f(x)=-sinx,f(1)=-.] 8.(2015·天津高考)已知函數(shù)f(x)=sin ωx+cos ωx(ω>0),x∈R.若函數(shù)f(x)在區(qū)間(-ω,ω)內(nèi)單調(diào)遞增,且函數(shù)y=f(x)的圖象關(guān)于直線x=ω對稱,則ω的值為________.  [f(x)=sin ωx+cos ωx=sinωx+, 因為f(x)在區(qū)間(-ω,ω)內(nèi)單調(diào)遞增,且函數(shù)圖象關(guān)于直線x=ω對稱, 所以f(ω)必為一個周期上的最大值,所以有ω·ω+=2kπ+,k∈Z, 所以ω2=+2kπ,k∈Z. 又ω-(-ω)≤,即

7、ω2≤,所以ω2=, 所以ω=.] 三、解答題 9.(2016·臨沂高三模擬)已知函數(shù)f(x)=Asin(ωx+φ)滿足下列條件: ①周期T=π;②圖象向左平移個單位長度后關(guān)于y軸對稱;③f(0)=1. (1)求函數(shù)f(x)的解析式; (2)設(shè)α,β∈,f=-,f=,求cos(2α-2β)的值. [解] (1)f(x)的周期T=π,∴ω=2.1分 f(x)的圖象向左平移個單位長度,變?yōu)間(x)=Asin.2分 由題意,g(x)關(guān)于y軸對稱, ∴2×+φ=+kπ,k∈Z.3分 又|φ|<,∴φ=,∴f(x)=Asin.4分 ∵f(0)=1,∴Asin=1,∴A=2.5分

8、 因此,f(x)=2sin.6分 (2)由f=-,f=,得2sin=-, 2sin=.7分 ∵α,β∈,∴2α,2β∈,∴cos 2α=,cos 2β=,sin 2α=,sin 2β=,11分 cos(2α-2β)=cos 2αcos 2β+sin 2αsin 2β =×+×=.12分 10.已知函數(shù)f(x)=Asin(ωx+φ)x∈R,A>0,ω>0,0<φ<的部分圖象如圖1-8所示,P是圖象的最高點,Q為圖象與x軸的交點,O為坐標原點.若OQ=4,OP=,PQ=. 圖1-8 (1)求函數(shù)y=f(x)的解析式; (2)將函數(shù)y=f(x)的圖象向右平移2個單位后得到函數(shù)y

9、=g(x)的圖象,當(dāng)x∈(-1,2)時,求函數(shù)h(x)=f(x)·g(x)的值域. [解] (1)由條件知cos ∠POQ==.2分 又cos ∠POQ=,∴xP=1,∴yP=2,∴P(1,2).3分 由此可得振幅A=2,周期T=4×(4-1)=12,又=12,則ω=.4分 將點P(1,2)代入f(x)=2sin, 得sin=1. ∵0<φ<,∴φ=,于是f(x)=2sin.6分 (2)由題意可得g(x)=2sin=2sin x.7分 ∴h(x)=f(x)·g(x)=4sin·sin x =2sin2x+2sin x·cos x =1-cos x+sin x=1+2sin.

10、9分 當(dāng)x∈(-1,2)時,x-∈,10分 ∴sin∈(-1,1), 即1+2sin∈(-1,3),于是函數(shù)h(x)的值域為(-1,3).12分 [B組 名校沖刺] 一、選擇題 1.已知函數(shù)y=loga(x-1)+3(a>0,且a≠1)的圖象恒過定點P,若角α的頂點與原點重合,始邊與x軸的正半軸重合,終邊經(jīng)過點P,則sin2α-sin 2α的值為(  ) A.    B.-    C.    D.- D [根據(jù)已知可得點P的坐標為(2,3),根據(jù)三角函數(shù)定義,可得sin α=,cos α=,所以sin2α-sin 2α=sin2α-2sin αcos α=2-2××=-.]

11、 2.(2016·東北三省四市第二次聯(lián)考)將函數(shù)f(x)=sin(2x+φ)的圖象向右平移個單位,所得到的圖象關(guān)于y軸對稱,則函數(shù)f(x)在上的最小值為(  ) A. B. C.- D.- D [f(x)=sin(2x+φ)向右平移個單位得到函數(shù)g(x)=sin=sin2x-+φ,此函數(shù)圖象關(guān)于y軸對稱,即函數(shù)g(x)為偶函數(shù),則-+φ=+kπ,k∈Z.又|φ|<,所以φ=-,所以f(x)=sin.因為0≤x≤,所以-≤2x-≤,所以f(x)的最小值為sin=-,故選D.] 3.(2016·湖北七市四月聯(lián)考)已知函數(shù)f(x)=asin x-bcos x(a,b為常數(shù),a≠0,x∈R

12、)在x=處取得最大值,則函數(shù)y=f是(  ) A.奇函數(shù)且它的圖象關(guān)于點(π,0)對稱 B.偶函數(shù)且它的圖象關(guān)于點對稱 C.奇函數(shù)且它的圖象關(guān)于點對稱 D.偶函數(shù)且它的圖象關(guān)于點(π,0)對稱 B [由題意可知f′=0, 即acos+bsin=0,∴a+b=0, ∴f(x)=a(sin x+cos x)=asin. ∴f=asin=acos x. 易知f是偶函數(shù)且圖象關(guān)于點對稱,故選B.] 4.(2016·陜西省第二次聯(lián)考)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖1-9所示,且f(α)=1,α∈,則cos=(  ) 圖1-

13、9 A.± B. C.- D. C [由圖易得A=3,函數(shù)f(x)的最小正周期T==4×,解得ω=2,所以f(x)=3sin(2x+φ).又因為點在函數(shù)圖象上,所以f=3sin=-3,解得2×+φ=π+2kπ,k∈Z,解得φ=+2kπ,k∈Z.又因為0<φ<π,所以φ=,則f(x)=3sin,當(dāng)α∈時,2α+∈.又因為f(α)=3sin=1,所以sin=>0,所以2α+∈,則cos=-=-,故選C.] 二、填空題 5.已知函數(shù)f(x)=sin ωx+cos ωx(ω>0)在上單調(diào)遞減,則ω的取值范圍是________. 【導(dǎo)學(xué)號:67722012】  [f(x)=sin

14、 ωx+cos ωx=sinωx+,令2kπ+≤ωx+≤2kπ+(k∈Z),解得+≤x≤+(k∈Z). 由題意,函數(shù)f(x)在上單調(diào)遞減,故為函數(shù)單調(diào)遞減區(qū)間的一個子區(qū)間,故有 解得4k+≤ω≤2k+(k∈Z). 由4k+<2k+,解得k<. 由ω>0,可知k≥0, 因為k∈Z,所以k=0,故ω的取值范圍為.] 6.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0).若f(x)在區(qū)間上具有單調(diào)性,且f=f=-f,則f(x)的最小正周期為________. π [∵f(x)在上具有單調(diào)性, ∴≥-,∴T≥. ∵f=f, ∴f(x)的一條對稱軸為x==.

15、 又∵f=-f, ∴f(x)的一個對稱中心的橫坐標為=, ∴T=-=,∴T=π.] 三、解答題 7.(2015·湖北高考)某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表: ωx+φ 0 π 2π x Asin(ωx+φ) 0 5 -5 0 (1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式; (2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值. [解] (1)根據(jù)表中已知數(shù)

16、據(jù),解得A=5,ω=2,φ=-,數(shù)據(jù)補全如下表: ωx+φ 0 π 2π x π Asin(ωx+φ) 0 5 0 -5 0 4分 且函數(shù)解析式為f(x)=5sin.6分 (2)由(1)知f(x)=5sin, 則g(x)=5sin.7分 因為函數(shù)y=sin x圖象的對稱中心為(kπ,0),k∈Z, 令2x+2θ-=kπ,解得x=+-θ,k∈Z.8分 由于函數(shù)y=g(x)的圖象關(guān)于點成中心對稱, 所以令+-θ=, 解得θ=-,k∈Z.10分 由θ>0可知,當(dāng)k=1時,θ取得最小值.12分 8.(2016·濰坊模擬)已知函數(shù)f(

17、x)=2sin xcos x-sin2x+cos 2x+,x∈R. (1)求函數(shù)f(x)在上的最值; (2)若將函數(shù)f(x)的圖象向右平移個單位,再將得到的圖象上各點橫坐標伸長到原來的2倍,縱坐標不變,得到g(x)的圖象.已知g(α)=-,α∈,求cos的值. [解] (1)f(x)=2sin xcos x-sin2x+cos 2x+ =sin 2x-+cos 2x+ =sin 2x+cos 2x=2sin.2分 ∵-≤x≤,∴-≤2x+≤,3分 ∴當(dāng)2x+=-,即x=-時,f(x)的最小值為2×=-.4分 當(dāng)2x+=,即x=時,f(x)的最大值為2×1=2.5分 (2)若將函數(shù)f(x)的圖象向右平移個單位,再將得到的圖象上各點橫坐標伸長到原來的2倍,縱坐標不變,得到g(x)=2sin .7分 由g(α)=2sin=-,得sin =-.8分 ∵<α<,∴π<α-<, ∴cos=-.10分 ∵<-<,11分 ∴cos=-=- =-.12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!