帶鋼跑偏機(jī)的分析設(shè)計(jì)【含CAD圖紙、說明書】
帶鋼跑偏機(jī)的分析設(shè)計(jì)【含CAD圖紙、說明書】,含CAD圖紙、說明書,帶鋼,跑偏機(jī),分析,設(shè)計(jì),cad,圖紙,說明書,仿單
目 錄
前 言 1
1 緒 論 2
1.1 液壓控制系統(tǒng)的組成 2
1.2 液壓控制系統(tǒng)的分類 3
1.2.1 按偏差信號(hào)的產(chǎn)生和傳遞介質(zhì)不同分類 3
1.2.2 按液壓控制元件不同分類 3
1.2.3 按被控物理量的不同分類 3
1.2.4 按輸入信號(hào)的不同分類 3
1.3 液壓控制系統(tǒng)的特點(diǎn) 4
1.4 電液伺服控制系統(tǒng)的發(fā)展概況 4
2 設(shè)計(jì)要求及方案的選擇 7
2.1 設(shè)計(jì)要求 7
2.2 方案選擇 7
2.2.1 方案一:機(jī)、液型帶鋼跑偏控制裝置 7
2.2.2 方案二:電、液型帶鋼跑偏控制裝置 9
3 電液伺服機(jī)構(gòu)的分析 11
3.1 電液伺服閥 11
3.1.1 電液伺服閥的組成 11
3.1.2 電液伺服閥的靜態(tài)特性 11
3.1.3 電液伺服閥的傳遞函數(shù) 13
3.2 電液伺服液壓缸的分析 15
3.3 電液伺服系統(tǒng)的數(shù)學(xué)模型 17
3.4 電液位置伺服系統(tǒng)的特點(diǎn) 18
3.5 電液位置伺服系統(tǒng)的設(shè)計(jì)原則 19
3.5.1 確定主要性能參數(shù)的原則 19
3.5.2 確定參數(shù)間適當(dāng)?shù)谋壤P(guān)系 20
3.5.3 應(yīng)考慮的其它因素 22
4 靜、動(dòng)態(tài)計(jì)算及分析 23
4.1 靜態(tài)計(jì)算 23
4.1.1 確定供油壓力 23
4.1.2 根據(jù)負(fù)載軌跡或負(fù)載工況確定、 23
4.1.3 選取伺服閥 25
4.2 動(dòng)態(tài)分析與計(jì)算 26
4.2.1 求取各元件的傳遞函數(shù) 26
4.2.2 繪制系統(tǒng)方塊圖 26
4.2.3 根據(jù)系統(tǒng)精度或頻寬要求初步確定開環(huán)增益 27
5 系統(tǒng)的校正 28
5.1 修改動(dòng)力機(jī)構(gòu)參數(shù),改善系統(tǒng)性能 28
5.1.1 確定活塞面積 28
5.1.2 重新選擇伺服閥 28
5.1.3 系統(tǒng)穩(wěn)定性和動(dòng)態(tài)特性核驗(yàn) 29
5.1.4 計(jì)算各項(xiàng)穩(wěn)態(tài)誤差 30
5.2 系統(tǒng)的校正 31
5.2.1 校正系統(tǒng)的動(dòng)態(tài)分析 32
5.2.2 校正后系統(tǒng)的誤差 33
6 液壓能源參數(shù)選擇 34
7 系統(tǒng)的仿真 35
7.1 系統(tǒng)PID控制器對(duì)系統(tǒng)的影響(I=0;D=0) 36
7.1.1 取P=100時(shí) 36
7.1.2 取P=150時(shí) 36
7.1.3 取P=208.9時(shí) 37
7.1.4 取P=300時(shí) 37
7.2 改變液壓缸阻尼比對(duì)系統(tǒng)的影響 38
7.2.1 取=0.1時(shí) 38
7.2.2 取=0.3時(shí) 38
7.2.3 取=0.5時(shí) 38
7.2.4 取=0.6時(shí) 39
7.2.5 取=0.7時(shí) 39
7.3 修改液壓缸活塞面積對(duì)系統(tǒng)的影響 40
7.3.1 取=1時(shí) 40
7.3.2 取=時(shí) 40
7.3.3 取= 3時(shí) 40
7.4 無阻尼液壓固有頻率對(duì)系統(tǒng)的影響 41
7.4.1 當(dāng)=50時(shí) 41
7.4.2 當(dāng)=65.6時(shí) 41
7.4.3 當(dāng)=88時(shí) 42
7.4.4 當(dāng)=95時(shí) 42
8 結(jié)論 43
致 謝 44
參考文獻(xiàn) 45
附錄A 譯文 46
附錄B 外文文獻(xiàn) 58
摘要
目前,隨著電腦技術(shù),液壓控制技術(shù)的發(fā)展,電液伺服控制系統(tǒng)也出現(xiàn)了突飛猛進(jìn)的成果。
帶鋼經(jīng)過連續(xù)軋制或酸洗等一系列加工處理后須卷成一定尺寸的鋼卷,由于輥系的偏差及帶材厚度不均和板材不齊等種種原因,使帶材在作業(yè)線上產(chǎn)生隨機(jī)偏離現(xiàn)象。它使卷取機(jī)卷成的鋼卷邊緣不齊,直接影響包裝,運(yùn)輸及降低成品率。所以有必要做防跑偏的控制系統(tǒng),以提高工作效率。
本文在通過對(duì)帶鋼跑偏機(jī)理的分析設(shè)計(jì),闡述了有關(guān)電液伺服控制系統(tǒng)元件的組成、結(jié)構(gòu)、工作原理及發(fā)展?fàn)顩r,并運(yùn)用現(xiàn)代電液伺服控制技術(shù)設(shè)計(jì)控制方案,采用MATLAB仿真,不斷調(diào)節(jié)使系統(tǒng)達(dá)到高效、穩(wěn)定的自動(dòng)跑偏控制的目的。
關(guān)鍵詞:電液伺服控制系統(tǒng);仿真
Abstract
Resently, as the development in computer technique and controlling in phyhical, the electro-hydraulic servo system system also appeared the progress by leaps and bounds result.
steel through consecution ?t system or sour wash etc. a series processes after handling must a steel for certain size a deviation for, because of the department of 1 ? and take the material thickness not all with plank material not ?? etc. all kinds reasons, make take the material in the homework on-line produce to deviate the phenomenon with the machine.It makes a steel for taking first machine book an edge not ?? the direct influence packs, transporting and lowering the finished product rate.So there is necessity doing the control system that defend run to be partial to, toing increase the work efficiency.
This text is passing to take the steel run the analysis that be partial to the mechanism designs, expatiating the relevant electricity liquid servocontrol system a purpose for constituting, construction, working principle and developping condition, and making use of modernly giving or get an electric shock liquid servocontrol technique designing controling project, adopting MATLAB imitating truely, continuously regulating making system attaining efficiently, stablely automatically running being partial to control.
Key words: electro-hydraulic servo system system; imitating
前 言
隨著20世紀(jì)自動(dòng)化技術(shù)的巨大進(jìn)步,自動(dòng)控制理論得到不斷地發(fā)展和完善。本文正是針對(duì)設(shè)計(jì)任務(wù),通過設(shè)計(jì)方案的分析比較之后,選擇電液控制系統(tǒng)來設(shè)計(jì)此次任務(wù)。
本文第一章介紹了液壓控制的一些基本概念,對(duì)起研究對(duì)象和任務(wù)作出了整體的介紹,并簡述了液壓控制技術(shù)的發(fā)展史。
第二章是對(duì)設(shè)計(jì)任務(wù)的分析及選擇設(shè)計(jì)方案,從而進(jìn)入本課題研究要點(diǎn)。
第三章介紹了所選設(shè)計(jì)方案中出現(xiàn)的一些問題,為下面的設(shè)計(jì)計(jì)算做好準(zhǔn)備工作。
第四、五、六章闡述設(shè)計(jì)的具體步驟和方法,得出系統(tǒng)的參數(shù),對(duì)設(shè)計(jì)任務(wù)作出解答。
第七章利用了先進(jìn)電腦仿真技術(shù)MATLAB對(duì)所做的系統(tǒng)進(jìn)行仿真校正,從而得到更為優(yōu)良的設(shè)計(jì)參數(shù),使系統(tǒng)更加完善。
本論文在王慧老師的悉心教導(dǎo)之下,通過研讀各著作期刊,多次的修改,由于作者水平有限,論文中難免出現(xiàn)點(diǎn)差錯(cuò),懇請(qǐng)讀者指正。
1 緒 論
液壓伺服控制系統(tǒng)是以液體壓力能為動(dòng)力的機(jī)械量(位移、速度和力)自動(dòng)控制系統(tǒng)。按系統(tǒng)中實(shí)現(xiàn)信號(hào)傳輸和控制方式不同分為機(jī)液伺服系統(tǒng)和電液伺服系統(tǒng)兩種。
機(jī)液伺服系統(tǒng)的典型實(shí)例是飛機(jī)、汽車和工程機(jī)械主離合器操縱裝置上常用的液壓助力器,機(jī)床上液壓仿形刀架和汽車與工程機(jī)械上的液壓動(dòng)力轉(zhuǎn)向機(jī)構(gòu)等。
電液伺服控制系統(tǒng)是以液壓為動(dòng)力,采用電氣方式實(shí)現(xiàn)信號(hào)傳輸和控制的機(jī)械量自動(dòng)控制系統(tǒng)。按系統(tǒng)被控機(jī)械量的不同,它又可以分為電液位置伺服系統(tǒng)、電液速度伺服控制系統(tǒng)和電液力控制系統(tǒng)三種。電液位置伺服控制系統(tǒng)適合于負(fù)載慣性大的高速、大功率對(duì)象的控制,它已在飛行器的姿態(tài)控制、飛機(jī)發(fā)動(dòng)機(jī)的轉(zhuǎn)速控制、雷達(dá)天線的方位控制、機(jī)器人關(guān)節(jié)控制、帶材跑偏、張力控制、材料試驗(yàn)機(jī)和加載裝置等中得到應(yīng)用。
1.1 液壓控制系統(tǒng)的組成
液壓控制系統(tǒng)不管多么復(fù)雜,都是由一些基本元件組成的,如圖1-1所示:
圖1-1 電液伺服控制系統(tǒng)
Fig.1-1 electro-hydraulic servo system
1)輸入元件——即指令元件,向系統(tǒng)發(fā)出指令信號(hào)的裝置,如指令電位器,閥芯,也可以是其它電器裝置或計(jì)算機(jī)。
2)反饋元件——檢測被控制量,將系統(tǒng)的輸出轉(zhuǎn)換為反饋信號(hào)的裝置,如測速機(jī)、閥套,以及其它類型傳感器。
3)比較元件——相當(dāng)于偏差檢測器,它的輸出等于系統(tǒng)輸入和反饋信號(hào)之差,如加法器、閥芯與閥套組件等。
4)液壓放大與控制元件——接受偏差信號(hào),通過放大、轉(zhuǎn)換與運(yùn)算(電液、機(jī)液、氣液轉(zhuǎn)換),產(chǎn)生所需要的液壓控制信號(hào)(流量、壓力),控制執(zhí)行機(jī)構(gòu)的運(yùn)動(dòng),如放大器、伺服閥、滑閥等。
5)液壓執(zhí)行元件——如液壓缸。
6)控制對(duì)象——接受系統(tǒng)的控制作用并將被控制量輸出,如負(fù)載裝置。
此外,系統(tǒng)中可能還有校正裝置,以及不包括在控制回路內(nèi)的能源設(shè)備和其它輔助裝置等。
液壓控制元件、執(zhí)行元件和負(fù)載在系統(tǒng)中是密切相關(guān)的,把三者的組合稱之為液壓動(dòng)力機(jī)構(gòu)。凡包含有液壓動(dòng)力機(jī)構(gòu)的反饋控制系統(tǒng)統(tǒng)稱為液壓控制系統(tǒng)。
1.2 液壓控制系統(tǒng)的分類
液壓控制系統(tǒng)可按下列不同原則進(jìn)行分類。
1.2.1 按偏差信號(hào)的產(chǎn)生和傳遞介質(zhì)不同分類
1) 機(jī)械液壓控制系統(tǒng);
2) 電氣液壓控制系統(tǒng);
3) 氣動(dòng)液壓控制系統(tǒng);
1.2.2 按液壓控制元件不同分類
1) 閥控系統(tǒng)——用伺服閥按節(jié)流原理來控制流入執(zhí)行機(jī)構(gòu)的流量或壓力的系統(tǒng)。
2) 泵控系統(tǒng)——利用伺服變量泵改變排量的辦法控制流入執(zhí)行機(jī)構(gòu)的流量和壓力系統(tǒng)。
1.2.3按被控物理量的不同分類
1) 位置控制系統(tǒng);
2) 速度控制系統(tǒng);
3) 加速度控制系統(tǒng);
4) 壓力控制系統(tǒng);
5) 力控制系統(tǒng);
6) 其它物理量控制系統(tǒng);
1.2.4按輸入信號(hào)的不同分類
1) 伺服系統(tǒng)——輸入量總在頻繁的變化,系統(tǒng)的輸出量能夠以一定的準(zhǔn)確度跟隨輸入量的變化而變化。
2) 恒值系統(tǒng)——輸入量保持為常量,或者只隨時(shí)間作緩慢的變化,系統(tǒng)能排除擾動(dòng)力的影響,以一定的準(zhǔn)確度將輸出量保持在希望的數(shù)值上。
除以上幾種分類方法外,還可將系統(tǒng)分為數(shù)字控制系統(tǒng)和連續(xù)時(shí)間控制系統(tǒng),線性或非線性控制系統(tǒng)等。
1.3 液壓控制系統(tǒng)的特點(diǎn)
液壓控制系統(tǒng)與其它類型系統(tǒng)相比,具有下列優(yōu)點(diǎn):
1) 液壓元件的功率 重量比和力矩 慣量比大, 功率傳遞密度高, 可組成體積小、重量輕、加速能力強(qiáng)、響應(yīng)速度快的驅(qū)動(dòng)大功率和大負(fù)載的控制系統(tǒng)。
2) 液壓控制系統(tǒng)可以實(shí)現(xiàn)頻繁的帶載起動(dòng)和制動(dòng), 可以方便地實(shí)現(xiàn)正反向直線或回轉(zhuǎn)運(yùn)動(dòng)和動(dòng)力控制, 調(diào)速范圍廣、低速穩(wěn)定性好、能量貯存和動(dòng)力傳輸方便。
3) 抗負(fù)載剛度大、控制精度高。
4) 液壓執(zhí)行元件速度快, 在伺服控制中采用液壓執(zhí)行元件可以使回路增益提高、頻寬高。
此外,液壓控制系統(tǒng)還有一些優(yōu)點(diǎn)。如液壓油的潤滑性好,液壓元件壽命長(與氣動(dòng)相比);低速平穩(wěn)性好,調(diào)速范圍寬;借助蓄能器能量儲(chǔ)存方便,易于采取節(jié)能措施;過載保護(hù)容易等。
液壓控制系統(tǒng)因有上述突出優(yōu)點(diǎn),使它獲得廣泛的應(yīng)用。但它還存在不少缺點(diǎn),因而又使它的應(yīng)用受到某些限制。其主要缺點(diǎn)有:
1) 液壓元件加工精度要求高,成本高,價(jià)格貴。
2) 當(dāng)液壓元件的密封裝置設(shè)計(jì)、制造或使用維護(hù)不當(dāng)時(shí),容易引起漏油,污染環(huán)境。采用石油基液壓油,在某些場合有引起火災(zāi)的危險(xiǎn)。采用抗燃液壓油可使這種危險(xiǎn)減小。
3) 液壓油易受污染。污染的油液會(huì)使伺服閥和液壓執(zhí)行機(jī)構(gòu)磨損而降低其性能甚至造成堵塞。油液污染是液壓控制系統(tǒng)發(fā)生故障的主要原因。因此,液壓控制系統(tǒng)通常要求對(duì)油液進(jìn)行精細(xì)地污染控制和嚴(yán)格的使用管理。
4) 與氣動(dòng)系統(tǒng)相比,液壓系統(tǒng)容易受溫度變化的影響。
5) 液壓能源的獲得、儲(chǔ)存和輸送不如電能方便。
1.4 電液伺服控制系統(tǒng)的發(fā)展概況
電液伺服控制技術(shù)最先產(chǎn)生于美國的 MIT,后因其響應(yīng)快、精度高,很快在工業(yè)界得到了普及。電液伺服系統(tǒng)是一種以液壓動(dòng)力元件作為執(zhí)行機(jī)構(gòu),根據(jù)負(fù)反饋原理,使系統(tǒng)的輸出跟蹤給定信號(hào)的控制系統(tǒng)。它不僅能自動(dòng)、準(zhǔn)確、快速地復(fù)現(xiàn)輸入信號(hào)的變化規(guī)律,而且可對(duì)輸入量進(jìn)行變換與放大。作為控制領(lǐng)域的一個(gè)重要研究對(duì)象,電液伺服系統(tǒng)的設(shè)計(jì)理論和方法一直受到控制學(xué)科的指導(dǎo)和啟發(fā),經(jīng)歷了從線性到非線性智能控制的發(fā)展歷程。
自從20世紀(jì)50年代麻省理工學(xué)院開始研究電液伺服系統(tǒng)的控制至以后的幾十年中,電液伺服控制設(shè)計(jì)基本上是采用基于工作點(diǎn)附近的增量線性化模型對(duì)系統(tǒng)進(jìn)行綜合與分析。PID 控制也因其控制律簡單和易于理解,受到工程界的普遍歡迎。然而,隨著人們對(duì)控制品質(zhì)要求的不斷提高,電液伺服系統(tǒng)中 PID 控制的地位發(fā)生了動(dòng)搖。這主要是由電液伺服系統(tǒng)的特性所決定的。首先,電液伺服系統(tǒng)是一個(gè)嚴(yán)重不確定非線性系統(tǒng),環(huán)境和任務(wù)復(fù)雜,普遍存在參數(shù)變化、外干擾和交叉耦合干擾;其次,電液伺服系統(tǒng)對(duì)頻帶和跟蹤精度都有很高的要求。如航空航天領(lǐng)域的系統(tǒng)頻寬可達(dá) 100Hz,已接近甚至超過液壓動(dòng)力機(jī)構(gòu)的固有頻率;另外,在高精度快速跟蹤條件下,電液伺服系統(tǒng)中的非線性作用已不容忽視。因此,可以說電液伺服系統(tǒng)是一類典型的未知不確定非線性系統(tǒng)。這類系統(tǒng)擾動(dòng)大、工作范圍寬、時(shí)變參量多、難以精確建模。這些特點(diǎn)對(duì)系統(tǒng)的穩(wěn)定性、動(dòng)態(tài)特性和精度都將產(chǎn)生嚴(yán)重的影響,特別是控制精度受負(fù)載特性的影響而難以預(yù)測。例如,在材料試驗(yàn)機(jī)上,一般的動(dòng)態(tài)加載多采用 PID方式,對(duì)不同的試件,必須更改不同的PID參數(shù) ,尤其是在材料變形的塑性區(qū)域,PID控制更加難以滿足人們?nèi)找婢?xì)的控制要求。
70年代末至80年代初,計(jì)算機(jī)技術(shù)的發(fā)展為電子技術(shù)和液壓技術(shù)的結(jié)合奠定了基礎(chǔ)。隨后計(jì)算機(jī)控制在電液伺服系統(tǒng)中得到應(yīng)用,使復(fù)雜控制策略的實(shí)現(xiàn)成為可能。自適應(yīng)控制的引入在一定程度上提高了系統(tǒng)的魯棒性和控制精度,并在解決許多工程問題上發(fā)揮了積極的作用。但在大擾動(dòng)或系統(tǒng)存在嚴(yán)重不確定性時(shí),自適應(yīng)算法將趨向復(fù)雜,造成實(shí)現(xiàn)上的困難。此外,它對(duì)非線性因素的處理能力也不盡人意。
近年來,控制學(xué)科的發(fā)展推動(dòng)了電液伺服系統(tǒng)智能控制的研究。對(duì)非對(duì)稱缸系統(tǒng),國內(nèi)早期在WE試驗(yàn)機(jī)上有過研究;國外也進(jìn)行了非對(duì)稱缸系統(tǒng)建模和 Robust控制的研究,如使用雙函數(shù)邊界法,將閥口流量、缸體運(yùn)動(dòng)的非線性用線性不確定方程來描述,將非線性問題轉(zhuǎn)化為參數(shù)攝動(dòng)問題進(jìn)行處理。此外,模糊控制、神經(jīng)網(wǎng)絡(luò)控制等非線性控制技術(shù)也都在電液伺服系統(tǒng)中取得了一席用武之地。尤其是在模糊控制方面,經(jīng)過多年的研究與實(shí)踐,已由最初的技術(shù)應(yīng)用研究,逐步形成了系統(tǒng)化的模糊控制設(shè)計(jì)理論和方法,并在電液伺服系統(tǒng)中取得成功的應(yīng)用。由此可見,電液伺服系統(tǒng)非線性智能控制研究的前景是十分廣闊的。
然而,目前仍存在許多問題。比如,應(yīng)用方面的非線性系統(tǒng)理論的不完備,對(duì)諸如控制策略設(shè)計(jì)、穩(wěn)定性分析以及非線性和智能控制理論方法在實(shí)際應(yīng)用中存在的局限性缺乏有針對(duì)性 的研究等。此外,值得指出的是,雖然電液伺服系統(tǒng)中的非線性因素會(huì)對(duì)控制系統(tǒng)的設(shè)計(jì)產(chǎn)生一定的影響,但是這些非線性因素的影響在多數(shù)條件下遠(yuǎn)不如負(fù)載干擾的影響大。在控制器的魯棒作用下,這些影響 也都可以在一定程度上得到削弱。但是,由于電液伺服系統(tǒng)的空載特性與負(fù)載特性差別很大,因此在進(jìn)行電液伺服系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)和控制器設(shè)計(jì)時(shí),必須考慮負(fù)載特性的影響。以往,人們多停留在對(duì)線性彈簧質(zhì)量負(fù)載的研究和分析中,而對(duì)非線性負(fù)載,卻很少從整個(gè)非線性閉環(huán)系統(tǒng)的角度進(jìn)行分析和綜合的研究。有些文獻(xiàn)即便涉及了這方面的研究,也大都是針對(duì)具體問題進(jìn)行的,并沒有為電液伺服控制這一類系統(tǒng)建立較為完善和規(guī)范化的非線性設(shè)計(jì)理論和方法。
基于上述現(xiàn)狀,對(duì)智能控制策略進(jìn)行深入研究,以尋求一種新的控制方法,并探求一條可行的工程實(shí)現(xiàn)途徑,實(shí)現(xiàn)對(duì)未知不確定非線性電液伺服系統(tǒng)的高品質(zhì)控制已經(jīng)刻不容緩。
液壓技術(shù)的進(jìn)步也是液壓控制技術(shù)發(fā)展的動(dòng)力。20世紀(jì)40年代由于軍事刺激,高速噴氣式飛行器要求響應(yīng)快且精度高的操縱控制,1940年底,在飛機(jī)上出現(xiàn)了電液伺服系統(tǒng),坦克裝甲車上開始應(yīng)用機(jī)液伺服轉(zhuǎn)向系統(tǒng)。作為電液轉(zhuǎn)換器,當(dāng)時(shí)滑閥由伺服電機(jī)驅(qū)動(dòng),由于電機(jī)慣量大,所構(gòu)成的電液轉(zhuǎn)換器時(shí)間常數(shù)大,限制了整個(gè)系統(tǒng)的響應(yīng)速度。到了20世紀(jì)50年代初,出現(xiàn)了快速響應(yīng)的永磁力矩馬達(dá),該力矩馬達(dá)拖動(dòng)滑閥,提高了電液伺服閥的響應(yīng)速度。60年代,結(jié)構(gòu)多樣的電液伺服閥的相繼出現(xiàn),尤其是干式力矩馬達(dá)的研制成功,使得電液伺服閥的性能日趨完善,促使電液伺服系統(tǒng)迅速發(fā)展。近20年來,隨著材料和工藝技術(shù)的進(jìn)步,電液伺服閥成本不斷降低,性能明顯提高,使得電液伺服系統(tǒng)應(yīng)用更加廣泛。但是,由于電液伺服閥對(duì)液體的清潔度要求十分苛刻,系統(tǒng)效率低,能耗大,綜合費(fèi)用還是相當(dāng)高。由此,一種可靠、價(jià)廉、控制精度和響應(yīng)速度均能滿足工業(yè)控制需要的電液比例控制技術(shù)應(yīng)運(yùn)而生。得到比電液伺服閥遠(yuǎn)為廣泛的應(yīng)用。
液壓控制技術(shù)在軍事工業(yè)中,用于飛機(jī)的操作系統(tǒng)、雷達(dá)跟蹤和艦船的舵機(jī)裝置、導(dǎo)彈的位置控制、坦克火炮的穩(wěn)定裝置等。在民用工業(yè)中,用于仿形或數(shù)控機(jī)床,船舶舵機(jī)和消擺系統(tǒng),冶金方面的帶鋼跑偏控制、張力控制、工程車輛轉(zhuǎn)向系統(tǒng),汽車的無人駕駛、自動(dòng)變速、主動(dòng)懸掛,試驗(yàn)裝置方面的抗震試驗(yàn)臺(tái)、材料試驗(yàn)機(jī)、道路模擬實(shí)驗(yàn)系統(tǒng)等。總之,液壓控制技術(shù)應(yīng)用愈來愈加廣泛,在各個(gè)工業(yè)部門發(fā)揮著重要作用。尤其是在計(jì)算機(jī)的應(yīng)用促使液壓控制技術(shù)得到更迅速的發(fā)展和更廣泛的應(yīng)用。
2 設(shè)計(jì)要求及方案的選擇
2.1 設(shè)計(jì)要求
帶鋼經(jīng)過連續(xù)軋制或酸洗等一系列加工處理后須卷成一定尺寸的鋼卷,由于輥系的偏差及帶材厚度不均和板材不齊等種種原因,使帶材在作業(yè)線上產(chǎn)生隨機(jī)偏離現(xiàn)象。它使卷取機(jī)卷成的鋼卷邊緣不齊,直接影響包裝,運(yùn)輸及降低成品率。所以有必要做防跑偏的控制系統(tǒng),以提高工作效率。
已知條件與要求:
機(jī)組最大卷取速度 =5
最大鋼卷質(zhì)量 =15000
卷取機(jī)移動(dòng)部分質(zhì)量 =20000
卷取誤差
移動(dòng)距離
導(dǎo)軌摩擦系數(shù)
工作環(huán)境 冷軋車間
根據(jù)對(duì)同類機(jī)組的實(shí)測數(shù)據(jù)及統(tǒng)計(jì)資料,經(jīng)分析確定系統(tǒng)的性能指標(biāo)為
系統(tǒng)誤差
系統(tǒng)頻寬
最大工作速度
最大加速度
2.2 方案選擇
根據(jù)主機(jī)參數(shù)及其控制系統(tǒng)要求,現(xiàn)在對(duì)現(xiàn)有兩種控制方案進(jìn)行對(duì)比:
2.2.1方案一:機(jī)、液型帶鋼跑偏控制裝置
該跑偏控制裝置由兩個(gè)先導(dǎo)閥、主閥(液動(dòng)型零開口四通滑閥)、雙出桿對(duì)稱液壓缸、無外動(dòng)力液壓油源等組成。其工作原理如圖2-1所示。
兩個(gè)錐閥既作為檢測帶鋼對(duì)中與否的傳感器, 又是主閥的先導(dǎo)閥。其結(jié)構(gòu)見圖2-2。先導(dǎo)閥閥芯為帶平衡活塞式結(jié)構(gòu), 靠彈簧復(fù)位; 滑輪及連桿靠螺紋與閥芯相聯(lián)并可調(diào)零; 主閥為液動(dòng)型零開口四通滑閥, 其結(jié)構(gòu)見圖2-3。
1-增速齒輪箱;2-恒壓變量液壓泵;
3-調(diào)壓溢流閥及壓力表;4-單向閥及精過濾器;
5-蓄能器及安全閥組;6-主閥;7-先導(dǎo)錐閥;
8-擺動(dòng)輥及可旋轉(zhuǎn)式支架;9-糾偏用液壓缸
圖2-1 機(jī)液跑偏控制裝置原理圖
Fig.2-1 The machine liquid runs to be partial to the control equips the principle
1-碰撞滑輪與連桿;2-閥體;3-閥芯;
4-復(fù)位彈簧;5-閥蓋
圖2-2 先導(dǎo)閥結(jié)構(gòu)
Fig.2-2 Lead first the valve construction
主閥采用彈簧對(duì)中, 閥芯為三臺(tái)肩四槽結(jié)構(gòu), 并在中間臺(tái)肩上開有兩個(gè)直徑為的徑向固定節(jié)流孔, 對(duì)應(yīng)于中間臺(tái)肩的壓力油通過徑向、軸向小孔分別引到閥芯兩端。閥芯中間為10mm 的軸向通孔, 并與回油臺(tái)肩上的一個(gè)10mm 徑向孔相通; 無外動(dòng)力液壓油源的動(dòng)力來源于活套小車上的擺動(dòng)輥(靠帶鋼張力旋轉(zhuǎn)), 擺動(dòng)輥經(jīng)中間齒輪箱帶動(dòng)液壓泵旋轉(zhuǎn), 產(chǎn)生高壓油, 并在液壓泵出口裝有蓄能器。
1-密封件;2-閥體;3-閥芯;4-對(duì)中彈簧;5-組合式密封件;6-彈簧卡圈;7-閥端蓋
圖2-3 主閥結(jié)構(gòu)
Fig.2-3 Main valve construction
假設(shè)帶鋼由于某種原因偏離機(jī)組中心向左移, 帶鋼碰撞先導(dǎo)錐閥(Ⅰ)上的滑輪使先導(dǎo)閥芯開啟, 主閥(液動(dòng)型零開口四通滑閥) 左端的高壓油經(jīng)先導(dǎo)錐閥(Ⅰ)閥口流到主閥回油腔, 使主閥閥芯在壓差作用下向左移動(dòng), 高壓()油與工作腔B 溝通, 工作腔A與回油 T 溝通, 液壓缸在壓力油的作用下, 帶動(dòng)活套小車上的擺動(dòng)輥繞其回轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)方向移動(dòng), 帶鋼在張力作用下向右移動(dòng), 直到帶鋼離開先導(dǎo)錐閥(Ⅰ)上的滑輪又回到機(jī)組中心。同理, 若帶鋼偏離機(jī)組中心向右移, 仿上述分析可知, 帶鋼仍能回到機(jī)組中心。
為了節(jié)能降耗, 本控制裝置液壓源采用恒壓變量泵與蓄能器組合的形式。系統(tǒng)不工作時(shí)液壓泵處于微流量工況, 蓄能器僅作為輔助動(dòng)力。這樣可避免普通液壓跑偏控制系統(tǒng)中定量泵高壓溢流發(fā)熱的現(xiàn)象, 延長液壓元件的使用壽命。
本控制裝置不用外動(dòng)力及控制電器件, 不需敷設(shè)電纜, 整個(gè)裝置加工簡單, 節(jié)省投資, 是一種典型的節(jié)能產(chǎn)品。
2.2.2方案二:電、液型帶鋼跑偏控制裝置
圖2-4 帶鋼跑偏控制原理圖
Fig.2-4 Taking the steel runs to be partial to control the principle diagram
圖2-5 跑偏控制系統(tǒng)原理圖
Fig.2-5 Run to be partial to control the system principle diagram
圖中,由于卷筒剛性連接的光電檢測帶鋼的橫向跑偏量,偏差信號(hào)經(jīng)放大器輸入至伺服閥,由伺服閥控制液壓缸驅(qū)動(dòng)卷筒,使卷筒向跑偏方向跟蹤。當(dāng)跟蹤位移相等時(shí),偏差信號(hào)為零,卷筒處于新的平衡位置,使卷筒上的鋼帶邊緣實(shí)現(xiàn)自動(dòng)卷齊。
由上面兩個(gè)方案的各方面的比較之下,各有利弊,第一種方案機(jī)液控制系統(tǒng)雖然成本低、維護(hù)方便,但結(jié)構(gòu)較為復(fù)雜,系統(tǒng)的控制精度低。電液伺服系統(tǒng)能充分發(fā)揮電子和液壓兩方面的優(yōu)勢。通過電路實(shí)現(xiàn)系統(tǒng)的校正、補(bǔ)償和測試很方便,因而便于改善和提高系統(tǒng)的性能。所以選擇第二種方案。
3 電液伺服機(jī)構(gòu)的分析
3.1 電液伺服閥
3.1.1 電液伺服閥的組成
電液伺服閥通常由力矩馬達(dá)(或力馬達(dá))、液壓放大器、反饋機(jī)構(gòu)(或平衡機(jī)構(gòu))三部分組成。
力矩馬達(dá)或力馬達(dá)的作用是把輸入的 電氣控制信號(hào)轉(zhuǎn)換為力矩或力,控制液壓放大器運(yùn)動(dòng)。而液壓放大器的運(yùn)動(dòng)又去控制液壓能源流向液壓執(zhí)行機(jī)構(gòu)的流量或壓力。力矩馬達(dá)或力馬達(dá)的輸出力矩或力很小,在閥的流量比較大時(shí),無法直接驅(qū)動(dòng)功率級(jí)閥的運(yùn)動(dòng),此時(shí)需要增加液壓前置級(jí),將力矩馬達(dá)或力馬達(dá)的輸出加以放大,再去控制功率閥,這就構(gòu)成了二級(jí)或三級(jí)電液伺服閥。第一級(jí)的結(jié)構(gòu)形式有單噴嘴擋板閥、雙噴嘴擋板閥、滑閥、射流管閥和射流元件等。功率級(jí)幾乎都是采用滑閥。平衡機(jī)構(gòu)一般用于單級(jí)伺服閥或二級(jí)彈簧對(duì)中式伺服閥。平衡機(jī)構(gòu)通常采用各種彈性元件,是一個(gè)力-位移轉(zhuǎn)換元件。在二級(jí)或三級(jí)電液伺服閥中,通常采用反饋機(jī)構(gòu)將輸出級(jí)(功率級(jí))的閥芯位移、或輸出流量、或輸出壓力以位移、力或電信號(hào)的形式反饋到第一級(jí)或第二級(jí)的輸入端,也可反饋到力矩馬達(dá)銜鐵組件或力矩馬達(dá)輸入端。
伺服閥輸出級(jí)所采用的反饋機(jī)構(gòu)或平 衡機(jī)構(gòu)是為了使伺服閥的輸出流量或輸出壓力獲得與輸入電氣控制信號(hào)成比例的特性,由于反饋機(jī)構(gòu)的存在,使伺服閥本身成為一個(gè)閉環(huán)控制系統(tǒng),提高了伺服閥的控制性能。
3.1.2 電液伺服閥的靜態(tài)特性
電液伺服閥的靜態(tài)特性即壓力-流量特性,是指穩(wěn)態(tài)情況下,閥的負(fù)載流量、負(fù)載壓力和閥芯的位移三者之間的關(guān)系,即。它表示閥的工作能力和性能,對(duì)電液伺服系統(tǒng)的靜、動(dòng)態(tài)特性的計(jì)算具有重要意義。
考慮理想的零開口閥,如圖所示,當(dāng)閥芯處于閥套的中間位置時(shí),四個(gè)控制節(jié)流口全部關(guān)閉。當(dāng)閥芯左移,即> 0時(shí),節(jié) 流口 開 口 面 積==0,節(jié)流口的液導(dǎo)==0,則在恒壓源情況下的負(fù)載流量方程為
(3-1)
式中,—流量系數(shù);
—液體密度。
圖3-1 典型的閥控液壓缸原理圖
Fig.3-1 The typical valve controls the liquid presses a principle diagram
當(dāng)閥芯右移,即<0時(shí),==0,==0,同樣可得
(3-2)
式中,負(fù)號(hào)表示負(fù)載流量方向。因?yàn)殚y是匹配對(duì)稱的,則,可將上面兩式合并為
(3-3)
若節(jié)流閥口為矩形,其面積梯度為,則
(3-4)
帶入式(2-3)得
(3-5)
令,則壓力—流量方程又可寫作
(3-6)
這就是具有匹配且對(duì)稱的節(jié)流閥口的理想伺服閥的壓力—流量特性方程。
3.1.3 電液伺服閥的傳遞函數(shù)
在一般情況下,若,力矩馬達(dá)控制線圈的動(dòng)態(tài)和滑閥的動(dòng)態(tài)可以忽略。其中,—控制線圈回路的轉(zhuǎn)折頻率;—滑閥的液壓固有頻率;—銜鐵擋板組件的固有頻率。作用在擋板上的壓力反饋的影響比力反饋小得多,壓力反饋回路也可以忽略。這樣,電液伺服閥的方塊圖可簡化成如圖3-2所示
圖3-2 電液伺服閥的簡化方框圖
Fig.3-2 The square frame in simplification diagram of the electricity liquid servovalve
則可得到電液伺服閥的傳遞函數(shù)為
(3-7)
式中,—伺服閥回路開環(huán)放大系數(shù),
—銜鐵擋板組件的固有頻率;
—由機(jī)械阻尼和電磁阻尼產(chǎn)生的阻尼比;
—反饋桿剛度;
—伺服放大增益;
—電磁力系數(shù);
—反饋桿小球中心到噴嘴中心的距離;
—噴嘴中心至彈簧管回轉(zhuǎn)中心(彈簧管薄壁部分中心)的距離。
或
(3-8)
式中,—伺服閥增益,
伺服閥通常以電流作為輸入?yún)⒘?,以空載流量作為輸出參量。此時(shí),伺服閥的傳遞函數(shù)可表示為
(3-9)
式中,—伺服閥空載流量增益;
—伺服閥的流量增益,=
在大多數(shù)電液伺服系統(tǒng)中,伺服閥的動(dòng)態(tài)響應(yīng)往往高于動(dòng)力元件的動(dòng)態(tài)響應(yīng)。為了簡化系統(tǒng)的動(dòng)態(tài)特性分析與設(shè)計(jì),伺服閥的傳遞函數(shù)可以進(jìn)一步簡化,一般可用二階振蕩環(huán)節(jié)表示。如果伺服閥二階環(huán)節(jié)的固有頻率高于動(dòng)力元件的固有頻率,伺服閥傳遞函數(shù)還可用一階慣性環(huán)節(jié)表示,當(dāng)伺服閥的固有頻率遠(yuǎn)大于動(dòng)力元件的固有頻率,伺服閥可看成比例環(huán)節(jié)。
二階近似傳遞函數(shù)可由下式估計(jì)
(3-10)
式中,—伺服閥固有頻率;
—伺服閥阻尼比。
將帶入式(2-10),即
(3-11)
展開得
(3-12)
又由整理得
(3-13)
則式(2-13)即為電液伺服閥輸入電壓與閥芯位移之間的關(guān)系方程。
3.2 電液伺服液壓缸的分析
如圖2-1所示,假定電液伺服閥與液壓缸的連接管道對(duì)稱且短而粗,管道中的壓力損失和管道動(dòng)態(tài)可以忽略,液壓缸每個(gè)工作腔內(nèi)各處壓力相等,油溫和體積彈性模量為常數(shù),液壓缸內(nèi)、外泄露均為層流流動(dòng)。
則流入液壓缸進(jìn)油腔的流量為
(3-14)
從液壓缸回油腔留出的流量為
(3-15)
式中,,—伺服閥各橋臂的壓降;
—液壓缸活塞有效面積;
—活塞位移;
—液壓缸內(nèi)泄露系數(shù);
—液壓缸外泄露系數(shù);
—有效體積彈性模量(包括油液、連接管道和缸體的機(jī)械柔度);
—液壓缸進(jìn)油腔的容積(包括閥、連接管道和進(jìn)油腔);
—液壓缸回油腔的容積(包括閥、連接管道和回油腔)。
在式(2-14)和式(2-15)中,等號(hào)右邊第一項(xiàng)是推動(dòng)活塞運(yùn)動(dòng)所需的流量,第二項(xiàng)是經(jīng)過活塞密封的內(nèi)泄露流量,第三項(xiàng)是經(jīng)過活塞桿密封處的外泄露流量,第四項(xiàng)是油液壓縮和腔體變形所需的流量。
液壓缸工作腔的容積可寫為
(3-16)
(3-17)
式中,—進(jìn)油腔的初始容積;
—回油腔的初始容積。
在上面分析伺服閥靜態(tài)特性時(shí),沒有考慮泄露和油液壓縮性的影響。因此,對(duì)匹配和對(duì)稱的伺服閥來說,兩個(gè)控制通道的流量、均等于負(fù)載流量。在動(dòng)態(tài)分析時(shí),需要考慮泄露和油液壓縮性的影響。由于液壓缸外泄露和壓縮性的影響,使流入液壓缸的流量和流出液壓缸的流量不相等,即≠。為了簡化分析,定義負(fù)載流量為
(3-18)
因此,由式(2-14)—(2-18)可得流量連續(xù)性方程為
(3-19)
式(2-14)和式(2-15)中,外泄露流量和通常很小,可以忽略不計(jì)。如果壓縮流量和相等,則。因?yàn)殚y是匹配和對(duì)稱的,所以通過伺服閥節(jié)流口1、2的流量相等(通過對(duì)角線橋臂的流量相等)。這樣,在動(dòng)態(tài)時(shí)仍近似使用。由于,所以,,從而有
(3-20)
要使壓縮流量相等,就應(yīng)使液壓缸兩腔的初始容積和相等,即
(3-21)
式中,—活塞在中間位置時(shí)每一個(gè)工作腔的容積;
—總壓縮容積。
當(dāng)活塞在中間位置時(shí),液體壓縮性影響最大,動(dòng)力元件固有頻率最低,阻尼比最小。因此,系統(tǒng)穩(wěn)定性最差。所以在分析時(shí),應(yīng)取活塞的中間位置作為初始位置。
由于,,則式(2-19)可簡化為
(3-22)
式中,—液壓缸總泄露系數(shù),
則式(2-22)是液壓動(dòng)力元件流量連續(xù)性方程式的常用形式。式中,等式右邊第一項(xiàng)是推動(dòng)液壓缸活塞運(yùn)動(dòng)所需的流量,第二項(xiàng)是總泄露流量,第三項(xiàng)是總壓縮流量。
液壓動(dòng)力元件的動(dòng)態(tài)特性受負(fù)載特性的影響。負(fù)載力一般包括慣性力、粘性阻尼力、彈性力和任意外負(fù)載力。
液壓缸的輸出力與負(fù)載力的平衡方程式為
(3-23)
式中,—活塞及負(fù)載折算到活塞上的總質(zhì)量;
—活塞及負(fù)載的粘性阻尼系數(shù);
—負(fù)載彈簧剛度;
—作用在活塞上的任意外負(fù)載力。
3.3 電液伺服系統(tǒng)的數(shù)學(xué)模型
在電液伺服機(jī)構(gòu)的分析中,可得出四個(gè)基本方程,即
電液伺服閥輸入電流與閥芯位移關(guān)系方程
(3-24)
壓力—流量方程
(3-25)
液壓動(dòng)力元件流量連續(xù)性方程
(3-26)
液壓缸的輸出力與負(fù)載力的平衡方程
(3-27)
考慮到通常很高,甚至高于系統(tǒng)采樣頻率,因而根據(jù)香農(nóng)采樣定理在采樣控制系統(tǒng)中,對(duì)油缸位移的采樣信號(hào)不會(huì)包含伺服閥本身的動(dòng)態(tài)響應(yīng)過程信息。所以在系統(tǒng)辨識(shí)中我們可以忽略伺服本身的動(dòng)特性。于是式(2-24)可近似寫作
(3-28)
則整理式(2-24)—(2-28),可得電液伺服系統(tǒng)的數(shù)學(xué)模型如下
(3-29)
式中
本章主要就電液伺服系統(tǒng)的機(jī)構(gòu)和特性進(jìn)行了分析,得出電液伺服閥輸入電流與閥芯位移關(guān)系方程;壓力—流量方程;液壓動(dòng)力元件流量連續(xù)性方程及液壓缸的輸出力與負(fù)載力的平衡方程四個(gè)電液伺服系統(tǒng)基本方程。結(jié)合這四個(gè)基本方程,經(jīng)過整理、化簡而得到最終所需的電液伺服系統(tǒng)的基本數(shù)學(xué)模型,供后續(xù)章節(jié)控制策略的應(yīng)用。
3.4 電液位置伺服系統(tǒng)的特點(diǎn)
某些電液位置伺服系統(tǒng)有時(shí)象機(jī)液伺服系統(tǒng)那樣,不采用校正的方法,而是依靠液壓動(dòng)力機(jī)構(gòu)本身固有的特點(diǎn)來滿足系統(tǒng)的性能要求。充分認(rèn)識(shí)液壓系統(tǒng)的特點(diǎn),對(duì)設(shè)計(jì)系統(tǒng),特別是對(duì)不經(jīng)校正的位置伺服系統(tǒng)是很有益處的。
從開環(huán)頻率特性看:
位置伺服系統(tǒng)的固有部分由一個(gè)積分環(huán)節(jié)和一個(gè)振蕩環(huán)節(jié)組成。振蕩環(huán)節(jié)的阻尼比隨工作點(diǎn)的變動(dòng)而在很大的范圍內(nèi)變化,系統(tǒng)的開環(huán)增益也因伺服閥的流量增益的變動(dòng)而變。因而造成開環(huán)頻率特性的浮動(dòng)。閥在零位區(qū)時(shí)最小,在空載時(shí)最大。所以位置伺服系統(tǒng)通常以零位區(qū)設(shè)計(jì)工況。由于比較小,在比例控制時(shí),主要保證系統(tǒng)具有足夠的幅值穩(wěn)定裕量,為此不得不把增益和穿越頻率壓得較低。系統(tǒng)的相角裕量接近
從閉環(huán)頻率特性看:
當(dāng)較小時(shí),閉環(huán)幅頻特性在轉(zhuǎn)折頻率附近已下降到接近-3dB,因此系統(tǒng)的頻寬僅能達(dá)到附近。而<,故系統(tǒng)的頻寬小于閉環(huán)固有頻率。
從階躍響應(yīng)曲線看:
過度過程曲線是典型三階系統(tǒng)的階躍響應(yīng)曲線,與通常的二階系統(tǒng)的過度過程有明顯的不同。這主要是由高頻小阻尼振蕩環(huán)節(jié)的影響所致。因此,未經(jīng)校正的液壓位置伺服系統(tǒng)一般不用二階系統(tǒng)近似。
在液壓位置伺服系統(tǒng)中,由于液壓動(dòng)力機(jī)構(gòu)的固有特點(diǎn),使系統(tǒng)的剛度很大,對(duì)干擾信號(hào)的誤差系數(shù)比較小,因此,負(fù)載擾動(dòng)的影響相對(duì)較弱。液壓執(zhí)行機(jī)構(gòu)的力矩慣量比很大,只要保證足夠的尺寸就可以獲得較高的固有頻率。閥控液壓缸特別是泵控液壓馬達(dá)又能提供比較恒定的流量增益。所以系統(tǒng)雖然有阻尼比小、多變等弱點(diǎn),液壓位置伺服系統(tǒng)在比例控制條件下也能滿足某些對(duì)象的需要,并獲得較為滿意的性能。
3.5 電液位置伺服系統(tǒng)的設(shè)計(jì)原則
由上面的分析可知,在比例控制條件下,、和這三個(gè)量以及它們之間的相互關(guān)系就決定了系統(tǒng)的主要性能。因此設(shè)計(jì)液壓位置伺服系統(tǒng)時(shí),首先應(yīng)解決如何根據(jù)系統(tǒng)的要求,確定這三個(gè)量的數(shù)值和三個(gè)量之間的恰當(dāng)?shù)谋壤P(guān)系。
3.5.1 確定主要性能參數(shù)的原則
系統(tǒng)的設(shè)計(jì)是從選擇液壓動(dòng)力機(jī)構(gòu)的參數(shù)著手的,所選參數(shù)應(yīng)能滿足驅(qū)動(dòng)負(fù)載和滿足系統(tǒng)性能兩方面的要求。
從提高系統(tǒng)性能角度考慮:
由前面分析可知為提高系統(tǒng)的快速性應(yīng)具有的穿越頻率,為提高系統(tǒng)的精度應(yīng)提高開環(huán)增益,兩者都受的限制。由式
(3-30)
可見,隨A的增大而增大,所以應(yīng)選擇大的A值。另外,由式
(3-31)
外干擾產(chǎn)生的誤差與系統(tǒng)的柔度成正比,即與成反比。所以為提高系統(tǒng)的快速性和跟蹤精度,減小外干擾力的影響,都要求選擇大的A值。此外,由于伺服閥的壓力-流量曲線有非線性特性,閥的流量增益隨著負(fù)載壓降的增大而降低,特別當(dāng)接近時(shí),流量增益的過分降低會(huì)使伺服系統(tǒng)的性能變差。一般系統(tǒng)允許增益下降的裕量為,對(duì)液壓位置伺服系統(tǒng)來說,即相當(dāng)于允許(因時(shí),零開口流量伺服閥的流量增益下降為空載時(shí)的57.7%)。從這個(gè)原則出發(fā)也要求選大的A值。但是大的尺寸要求有大的伺服閥,會(huì)使系統(tǒng)的功率加大,效率降低,經(jīng)濟(jì)性變差。
從滿足驅(qū)動(dòng)負(fù)載要求考慮:
液壓動(dòng)力機(jī)構(gòu)應(yīng)按負(fù)載匹配的原則確定A,使所選動(dòng)力機(jī)構(gòu)功率最小,效率較高。
一些大功率動(dòng)力控制類伺服系統(tǒng),對(duì)動(dòng)特性常常要求不高,而把效率放在首位,這時(shí)應(yīng)按滿足負(fù)載要求確定參數(shù)。反之,對(duì)于中、小功率系統(tǒng),經(jīng)濟(jì)性常常是次要的,主要考慮能否有足夠的頻寬和精度,應(yīng)按動(dòng)特性要求選擇參數(shù)。
對(duì)于一般系統(tǒng)我們常用的辦法是,首先采用按負(fù)載匹配的原則確定動(dòng)力機(jī)構(gòu)的尺寸,然后根據(jù)動(dòng)力機(jī)構(gòu)的和值確定系統(tǒng)可能有的最好性能(精度和頻寬),如不滿足系統(tǒng)要求,再回過頭來重新選擇固有頻率高的動(dòng)力機(jī)構(gòu),即增大動(dòng)力機(jī)構(gòu)的尺寸,直到滿足性能要求為止。這樣做等于把按負(fù)載匹配的原則所選的尺寸做基準(zhǔn)值(它常常就是位置伺服系統(tǒng)可能的最小尺寸),然后再修正到能滿足系統(tǒng)性能所需要的一個(gè)較大的尺寸為止。即在A大(高性能)與功率最小(高效率)之間取折衷。
3.5.2 確定參數(shù)間適當(dāng)?shù)谋壤P(guān)系
為使系統(tǒng)具有較好的動(dòng)態(tài)性能,應(yīng)要求它的閉環(huán)幅頻特性在盡可能寬的頻帶內(nèi)實(shí)現(xiàn)幅值近似等于1,即
(3-32)
容易證明,對(duì)于三階系統(tǒng),如果希望在盡可能寬的頻寬內(nèi)滿足的條件,其閉環(huán)傳遞函數(shù)應(yīng)具有如下典型形式
(3-33)
根據(jù)此典型閉環(huán)傳遞函數(shù)可以求得相應(yīng)的典型預(yù)期開環(huán)傳遞函數(shù)
(3-34)
令
上式可化成
(3-35)
可得
(3-36)
如果系統(tǒng)參數(shù)具有公式(3-36)所示,即實(shí)現(xiàn)了工程上常用的所謂“三階最佳”,遺憾的是,實(shí)際系統(tǒng)中振蕩環(huán)節(jié)的阻尼比不可能恰好就是,所以不經(jīng)校正的液壓位置伺服系統(tǒng)要實(shí)現(xiàn)“三階最佳”是困難的。實(shí)際系統(tǒng)的阻尼比通常遠(yuǎn)比0.707為小且多變,為了接近上述指標(biāo),設(shè)計(jì)者首先應(yīng)考慮采取措施提高值和減小的變化。比如采用加速度或壓差反饋校正提高阻尼比,使接近于0.7以后,即可按“三階最佳”的原則調(diào)整參數(shù)間的關(guān)系。
設(shè)計(jì)一般系統(tǒng)時(shí),常以為參考量,來適當(dāng)?shù)倪x取比值。當(dāng)0.7時(shí),取=,工程上通常去;當(dāng)較小時(shí),則取較小的值,若系統(tǒng)不允許有較大的超調(diào)也取較小的值;若系統(tǒng)允許有較大的超調(diào),則相應(yīng)的取較大的值。
當(dāng)要求更精細(xì)的計(jì)算,或者系統(tǒng)的結(jié)構(gòu)超過三階以上時(shí),可以通過繪制博德圖,并估計(jì)到參數(shù)和工況變動(dòng)引起博德圖浮動(dòng)的情況下,保證系統(tǒng)有足夠的穩(wěn)定裕量,選擇合適的增益和穿越頻率。也可以通過模擬機(jī)和數(shù)字仿真尋找最佳參數(shù)見關(guān)系。
3.5.3 應(yīng)考慮的其它因素
由式
(3-36)
知,為了減小系統(tǒng)的靜態(tài)誤差,在增益分配時(shí),希望提高系統(tǒng)電氣部分的增益,減小液壓部分的增益。從提高系統(tǒng)剛度考慮應(yīng)減少執(zhí)行機(jī)構(gòu)的泄露量和閥的流量-壓力系數(shù)(減?。?。可見適用于液壓位置伺服系統(tǒng)的動(dòng)力機(jī)構(gòu),應(yīng)具有高的壓力增益和低的流量增益(在原點(diǎn)處)。零開口流量伺服閥、低泄露量的液壓缸和液壓馬達(dá)具有這樣的特性。但是低泄露量的液壓缸常常有較大的摩擦力和要求較大的啟動(dòng)壓力,若要求系統(tǒng)具有較好的低速平穩(wěn)性,則應(yīng)選擇低摩擦和有較大泄露量的液壓執(zhí)行機(jī)構(gòu)。
綜上所述,液壓位置伺服系統(tǒng),應(yīng)選擇具有高壓力增益和恒定流量增益的流量伺服閥,選擇足夠尺寸的液壓執(zhí)行機(jī)構(gòu)。
4 靜、動(dòng)態(tài)計(jì)算及分析
4.1 靜態(tài)計(jì)算
4.1.1 確定供油壓力
選用較高的供油壓力,在相同的輸出功率時(shí),可以減小所需的流量,因而可以減小系統(tǒng)組成的尺寸和重量又獲得快的響應(yīng)速度,這是采用高壓能源的主要好處。但是,當(dāng)壓力超過時(shí),由于材料強(qiáng)度的限制將使重量增加。提高壓力使泄露增大,增加了功率損失;且要求提高元件的加工精度,從而提高了成本;高壓將使噪聲增大、元件壽命降低、維護(hù)較難。
在一般工業(yè)系統(tǒng)中,通常選取供油壓力為,在軍用伺服系統(tǒng)中或尺寸重量受到限制的情況下,則選用。
通常,如果情況允許的話,總是希望選用較低的供油壓力,因?yàn)檫@有利于延長元件和系統(tǒng)的壽命,有利于減小泄漏,使功率損失最小。同時(shí),低壓系統(tǒng)容易維護(hù),而且允許系統(tǒng)有較大的污染而不易出事故。供油壓力的最后選定必須與執(zhí)行元件的規(guī)格相配合,與系統(tǒng)組成元件的額定壓力相適應(yīng)。
按同類機(jī)組選=40。
4.1.2 根據(jù)負(fù)載軌跡或負(fù)載工況確定、
忽略粘性摩擦,動(dòng)力機(jī)構(gòu)的力平衡方程式為
式中 ——庫侖摩擦力,==17500;
由于卷取機(jī)跟蹤帶鋼邊緣的橫向移動(dòng)而運(yùn)動(dòng),帶鋼的橫向位移實(shí)際是一個(gè)隨機(jī)信號(hào)。根據(jù)生產(chǎn)統(tǒng)計(jì)數(shù)據(jù),可用正弦信號(hào)逼近。因此在求取負(fù)載軌跡方程式時(shí),可用一個(gè)速度幅值為最大工作速度、頻率為系統(tǒng)頻寬的正弦信號(hào)作為卷取機(jī)的典型信號(hào)。即
則力平衡方程為
=15400+17500
慣性負(fù)載或彈性負(fù)載的負(fù)載軌跡是一個(gè)正橢圓,曲線與橫軸的交點(diǎn)即為最大負(fù)載力,用表示。曲線與縱軸的交點(diǎn)為最大負(fù)載速度,用表示。則負(fù)載軌跡的通式可表示為
則
根據(jù)上述的式子可在平面上繪制負(fù)載軌跡如圖4-1。如取縱坐標(biāo)比例尺為0.0044;橫坐標(biāo)比例尺為3080;只畫出Ⅰ-Ⅱ象限的圖形,負(fù)載軌跡是一個(gè)半徑為5的半圓。圓心在橫軸上且距坐標(biāo)原點(diǎn)為5.68,見圖中曲線1。由圖可見,最大負(fù)載力為=32900;最大負(fù)載速度為0.022
圖4-1 跑偏控制系統(tǒng)負(fù)載軌跡
Fig.4-1 Run to be partial to control the system load the track
找一條閥控缸動(dòng)力機(jī)構(gòu)的輸出特性與該負(fù)載軌跡相切,并使兩者的最大功率點(diǎn)盡量重合或靠近,見圖4-1中曲線2。
負(fù)載功率為
令對(duì)取導(dǎo)數(shù)并令其為零,求得最大功率點(diǎn)的負(fù)載力和速度為
==24860N
=0.0193m/s
讓圖中兩條曲線的最大功率點(diǎn)重合,見圖中點(diǎn),并認(rèn)為它們?cè)谠擖c(diǎn)相切,則液壓缸的有效面積和伺服閥空載流量值分別為
=()
取標(biāo)準(zhǔn)直徑后,=則
==0.0193
=3.15=18.9
若采用工程近似算法求取液壓缸面積,則
==1.27
該值遠(yuǎn)大于按負(fù)載匹配原則求取的的數(shù)值,顯然工程近似算法偏于保守。
4.1.3 選取伺服閥
根據(jù)液壓執(zhí)行元件所需的最大負(fù)載流量及最大負(fù)載壓力,計(jì)算伺服閥的閥壓降,再根據(jù)、,計(jì)算伺服閥樣本對(duì)應(yīng)參數(shù)、,最后按樣本給出的閥壓降和樣本給出的額定負(fù)載流量選伺服閥型號(hào)及規(guī)格,計(jì)算方法如下:
1)計(jì)算伺服閥供油壓力
2)計(jì)算閥壓降
3)根據(jù)伺服閥樣本給出的閥壓降,及、計(jì)算計(jì)算公式如下:
4)選定伺服閥電流。最后根據(jù)伺服閥額定電流、閥壓降及額定負(fù)載流量,查伺服閥型號(hào)。
若選取=63的DYC系列兩級(jí)滑閥式電液伺服閥,所選伺服閥在=63時(shí)的空載流量應(yīng)大于
=
選擇DYC系列供油壓力為=63時(shí),額定空載流量為25的伺服閥可滿足要求。該閥的額定電流為=300,控制繞組電阻為220。當(dāng)該閥工作在=40時(shí),空載流量為=25=19.9=3.32。此時(shí)伺服閥的流量增益為
===1.11()/
由實(shí)測的壓力增益曲線查得,其流量-壓力系數(shù)可由已知壓力增益和流量增益換算得到,流量-壓力系數(shù)值為
==6.9
4.2 動(dòng)態(tài)分析與計(jì)算
4.2.1 求取各元件的傳遞函數(shù)
伺服閥的傳遞函數(shù)通常用振蕩環(huán)節(jié)來近似,即
=
光電檢測器和伺服放大器可看成比例環(huán)節(jié)
增益可通過改變伺服放大器的增益在較寬的范圍內(nèi)調(diào)整。
在計(jì)算液壓缸的固有頻率和總?cè)莘e時(shí)應(yīng)考慮到管道容積和液壓缸空行程,則
由于被控質(zhì)量很大,閥的流量-壓力系數(shù)和液壓缸的泄露所能提供的阻尼有限。動(dòng)力機(jī)構(gòu)的阻尼主要由摩擦提供,根據(jù)現(xiàn)有同類機(jī)組測定,液壓阻尼比為=0.3左右。液壓動(dòng)力機(jī)構(gòu)的傳遞函數(shù)可寫成:
4.2.2 繪制系統(tǒng)方塊圖
系統(tǒng)方塊圖如圖4-2所示。
圖4-2 跑偏系統(tǒng)方塊圖
Fig.4-2 Run to be partial to the system the square a diagram
系統(tǒng)開環(huán)傳遞函數(shù)為
式中,為速度放大系數(shù)
值待定。
4.2.3 根據(jù)系統(tǒng)精度或頻寬要求初步確定開環(huán)增益
該系統(tǒng)的穩(wěn)態(tài)誤差主要是速度和加速度信號(hào)引起的位置誤差,其中速度引起的誤差所占比重較大??紤]到其它因素的影響,進(jìn)行誤差分配并保留有一定余量。所以暫確定允許誤差(對(duì)應(yīng)最大工作速度)為
系統(tǒng)開環(huán)增益應(yīng)為
1/s
5 系統(tǒng)的校正
接下去要做的應(yīng)該是繪制博德圖,進(jìn)行系統(tǒng)的動(dòng)態(tài)分析等。但是,從所得參數(shù)已經(jīng)明顯看出,系統(tǒng)的動(dòng)、靜態(tài)指標(biāo)難以兼顧。如果保持增益為=22 1/s,以滿足精度要求,系統(tǒng)的穩(wěn)定裕量和動(dòng)態(tài)品質(zhì)要求將難以滿足,反之,如果降低增益以保證系統(tǒng)的穩(wěn)定裕量,精度又會(huì)降低。為此,可分別用修改動(dòng)力機(jī)構(gòu)參數(shù)或選擇校正裝置兩種辦法改善系統(tǒng)性能。
本系統(tǒng)要不停地跟蹤軋機(jī)出口板材的橫向運(yùn)動(dòng),由于軋制狀態(tài)的不斷變化,出口板材的橫向位移是隨機(jī)的所以為了保證跟蹤精度,主要應(yīng)要求系統(tǒng)具有足夠?qū)挼念l帶,因此滯后校正不合適。采用加速度或壓力反饋校正都是可行的,這里根據(jù)條件設(shè)想采用壓力反饋校正。下面分別介紹采用修改動(dòng)力機(jī)構(gòu)參數(shù)和壓力反饋校正兩種辦法。
5.1 修改動(dòng)力機(jī)構(gòu)參數(shù),改善系統(tǒng)性能
5.1.1 確定活塞面積
為了保證系統(tǒng)的穩(wěn)定,有,此式表明,為了保證系統(tǒng)穩(wěn)定,速度放大系數(shù)應(yīng)限制在液壓固有頻率的20%~40%以內(nèi),這是工程計(jì)算中常用的一個(gè)經(jīng)驗(yàn)。
設(shè)想系統(tǒng)不加校正,為保證系統(tǒng)具有=22 1/s的增益而又有足夠的穩(wěn)定余量,至少應(yīng)有。由要求的值反求液壓缸尺寸,考慮標(biāo)準(zhǔn)直徑后取=。這樣重新確定一組動(dòng)力機(jī)構(gòu)參數(shù)為
=;=22 1/s;
=88;=0.3
5.1.2 重新選擇伺服閥
按新的值計(jì)算動(dòng)力機(jī)構(gòu)輸出特性在-平面上的頂點(diǎn),其值為=1.6840=67200N。由該點(diǎn)出發(fā)做一條拋物線與負(fù)載軌跡相切,見圖4-1曲線3,該拋物線即為所要求的動(dòng)力機(jī)構(gòu)輸出特性。也可近似在負(fù)載軌跡最大功率點(diǎn)與最大速度點(diǎn)之間預(yù)先找一個(gè)設(shè)定的切點(diǎn),由頂點(diǎn)出發(fā)過該點(diǎn)作一條拋物線,并找出拋物線與縱坐標(biāo)軸的交點(diǎn)以便計(jì)算伺服閥的空載流量,這樣做雖然不精確,但工程上是允許的。比如選定點(diǎn)為b(=20790,=0.0215),則拋物線與縱坐標(biāo)軸的交點(diǎn)為
伺服閥空載流量為
=
如選擇=63DYC系列伺服閥,當(dāng)=63時(shí),伺服閥的空載流量應(yīng)有
=
選取空載額定流量為40的DYC伺服閥可滿足要求,當(dāng)該伺服閥用在=40時(shí),所具有的空在流量為
=31.87=5.3
以此計(jì)算伺服閥的流量增益為
伺服閥的動(dòng)態(tài)參數(shù)同前。
5.1.3 系統(tǒng)穩(wěn)定性和動(dòng)態(tài)特性核驗(yàn)
按修改后的參數(shù)繪制系統(tǒng)方塊圖,
收藏