喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================
本科畢業(yè)設計說明書(論文)第34頁 共33頁
1 緒論
1.1 課題研究的目的和意義
據統(tǒng)計,國內的轎車保有量2005年已達到900余萬輛, 在現實生活中,轎車、吉普在路途上換胎一直是駕車者們一件頭痛的事,尤其是在酷熱的夏天和嚴寒而綿綿細雨的冬天,半個多時晨換下胎來,不僅身心勞累,且渾身油泥。隨著技術與經濟的發(fā)展,一種起重工具液壓千斤頂大量涌現于市場,其構造簡單、操作方便,修理汽車、拖拉機等可用它將車身頂起,方便修理。液壓千斤頂是根據帕斯卡原理工作,它由油箱、大小不同的兩個壓力油缸、單向閥等幾個部分組成。工作時,提起小活塞將油吸入小壓力油缸,當壓下小活塞時將油液壓進大壓力油缸。通過兩個單向閥門的控制,小活塞對油的壓強傳遞給大活塞,將重物頂起來。小活塞不斷地往復動作,就可以把重物頂到一定的高度。工作完畢,打開關截止閥,使大壓力油缸和油箱連通。這時,只要在大活塞上稍加壓力,大活塞即可下落,油回到油箱中去。
千斤頂分為機械千斤頂和液壓千斤頂兩種,原理各有不同。從原理上來說,液壓千斤頂所基于的原理為帕斯卡原理,在比較小的活塞上面施加的壓力比較小,而大的活塞上施加的壓力也比較大,這樣能夠保持液體的靜止。通過液體的傳遞可以得到不同端上的不同的壓力,這樣就可以達到一個變換的目的。機械千斤頂采用機械原理,以往復扳動手柄,拔爪即推動棘輪間隙回轉,小傘齒輪帶動大傘齒輪、使舉重螺桿旋轉,從而使升降套筒獲得起升或下降,而達到起重拉力的功能。但不如液壓千斤頂簡易。
千斤頂采用液壓傳動的優(yōu)點:
(1)由于液壓傳動是油管連接,所以借助油管的連接可以方便靈活地布置傳動機構,這是比機械傳動優(yōu)越的地方。
(2)液壓傳動裝置的重量輕、結構緊湊、慣性小。
(3)傳遞運動均勻平穩(wěn),負載變化時速度較穩(wěn)定。
(4)液壓裝置易于實現過載保護——借助于設置溢流閥等,同時液壓件能自行潤滑,因此使用壽命長。
(5)液壓元件已實現了標準化、系列化和通用化,便于設計、制造和推廣使用。
隨著生活水平的發(fā)展,設計人性化的產品越來越受到人們的喜愛。電動液壓千斤頂采用液壓傳動,與機械手動千斤頂相比,具有使用攜帶方便、運行平穩(wěn)等優(yōu)點。目前液壓技術日趨完善且被應用于各個領域,與液壓傳動相關的產品成本也將逐漸降低,因此,低成本的電動液壓千斤頂具有巨大的市場。
1.2 課題的國內外發(fā)展研究現狀
自18世紀末英國制成世界上第一臺水壓機算起,液壓傳動技術已有二三百年的歷史。直到20世紀30年代它才較普遍地用于起重機、機床及工程機械。在第二次世界大戰(zhàn)期間,由于戰(zhàn)爭需要,出現了由響應迅速、精度高的液壓控制機構所裝備的各種軍事武器。第二次世界大戰(zhàn)結束后,戰(zhàn)后液壓技術迅速轉向民用工業(yè),液壓技術不斷應用于各種自動機及自動生產線。
本世紀60年代以后,液壓技術隨著原子能、空間技術、計算機技術的發(fā)展而迅速發(fā)展。因此,液壓傳動真正的發(fā)展也只是近三四十年的事。當前液壓技術正向迅速、高壓、大功率、高效、低噪聲、經久耐用、高度集成化的方向發(fā)展。同時,新型液壓元件和液壓系統(tǒng)的計算機輔助設計(CAD)、計算機輔助測試(CAT)、計算機直接控制(CDC)、機電一體化技術、可靠性技術等方面也是當前液壓傳動及控制技術發(fā)展和研究的方向。
我國的液壓技術最初應用于機床和鍛壓設備上,后來又用于拖拉機和工程機械。現在,我國的液壓元件隨著從國外引進一些液壓元件、生產技術以及進行自行設計,現已形成了系列,并在各種機械設備上得到了廣泛的使用。
現在,液壓技術被廣泛應用與各個領域,液壓千斤頂的設計也越來越趨向人性化,目前,國內外的千斤頂在性能滿足要求的同時,還要考慮千斤頂操作的靈活方便。根據實際需要,目前市場的千斤頂有YZ系列千斤頂、超薄型千斤頂、自鎖式千斤頂等類型。千斤頂還分為電動千斤頂和手動千斤頂。電動千斤頂一般以液壓系統(tǒng)為基礎進行設計,具有頂起重量大、起升平穩(wěn)、操作方便等優(yōu)點。手動千斤頂以螺紋千斤頂為代表,通過螺紋傳動來頂起重物。
1.3 課題研究的主要內容
(1)根據千斤頂的設計電動液壓千斤頂的總體方案。
(2)根據工作情況設計液壓千斤頂的具體結構,確定主要零部件的參數,對千斤頂的零件進行強度檢驗。
(3)繪制二維零件圖及總體裝配圖。
2 電動液壓千斤頂概論
2.1 液壓千斤頂工作原理
圖2.1 液壓千斤頂工作原理圖
1—杠桿手柄 2—小油缸 3—小活塞 4,7—單向閥 5—吸油管 6,10—管道
8—大活塞 9—大油缸 11—截止閥 12—油箱
圖2.1是液壓千斤頂的工作原理圖。大油缸9和大活塞8組成舉升液壓缸。杠桿手柄1、小油缸2、小活塞3、單向閥4和7組成手動液壓泵。如提起手柄使小活塞向上移動,小活塞下端油腔容積增大,形成局部真空,這時單向閥4打開,通過吸油管5從油箱12中吸油;用力壓下手柄,小活塞下移,小活塞下腔壓力升高,單向閥4關閉,單向閥7打開,下腔的油液經管道6輸入舉升油缸9的下腔,迫使大活塞8向上移動,頂起重物。再次提起手柄吸油時,單向閥7自動關閉,使油液不能倒流,從而保證了重物不會自行下落。不斷地往復扳動手柄,就能不斷地把油液壓入舉升缸下腔,使重物逐漸地升起。如果打開截止閥11,舉升缸下腔的油液通過管道10、截止閥11流回油箱,重物就向下移動。這就是液壓千斤頂的工作原理。
在本次設計中,為使液壓千斤頂的操作更加省力,將小活塞驅動由手動改為電動,利用汽車點煙器上的電源,通過電機帶動合適的偏心輪機構驅動活塞上下運動。
2.2 設計要求
本課題的設計要求
(1)設計一個兩級的液壓缸。
(2)千斤頂頂起的重量為1.0t。
(3)千斤頂的頂升高度為150mm。
(4)千斤頂的驅動電機要求電壓為12V直流電壓。
2.3 確定總體方案
2.3.1 液壓回路設計
圖2.2 液壓回路原理圖
根據液壓千斤頂工作原理圖2.1,結合本課題設計要求及布置情況,設計的液壓千斤頂液壓回路原理圖如圖2.2所示。圖中液壓泵擬采用單向柱塞泵,通過偏心輪驅動柱塞往復運動,吸油行程柱塞泵通過單向閥2從油箱吸油,壓油行程中單向閥2關閉,單向閥1打開,液壓油輸出到頂升液壓缸將負載頂起,頂升到所需位置時,切斷電機電源,柱塞泵停止運動,單向閥1和二位二通電磁閥都處于關閉位置,阻止了液壓油流回油箱,負載保持在所需位置不動。當負載需要放回時,只需操縱控制器上的相應開關,打開二位二通電磁閥,油液便可流入油箱。為了防止電機及液壓系統(tǒng)過載損壞,在油路中設計了安全閥,當出現管路堵塞或其它情況使油壓過大時,液壓油便打開安全閥流回油箱。
2.3.2 總體結構設計
本次設計的千斤頂結構如圖2.3所示。
圖2.3 液壓千斤頂結構圖
該電動液壓千斤頂由12V直流電機、偏心輪機構、柱塞缸、兩級頂升液壓缸和若干控制閥及操縱控制器等組成。大小活塞和兩級液壓缸體組成頂升液壓缸。工作時,將電源插頭插入汽車點煙器上插座,按下操縱控制器上的開關,12V直流電機帶動偏心輪機構驅動柱塞往復運動,當電動機偏心輪機構使柱塞向右移動時,柱塞下端油腔容積增大,形成局部真空,這時聯(lián)接油箱油路上的彈簧小球使油路相通,柱塞缸通過吸油管將液壓油吸入腔內。柱塞左移時,柱塞下腔壓力升高,彈簧小球使油關閉,下腔的油液經管道輸入頂升油缸的下腔,迫使大活塞向上移動,頂起重物。柱塞再次右移時,與頂升液壓缸相連接的彈簧小球使大液壓缸的油口自動關閉,使油液不能倒流,從而保證了重物不會自行下落。不斷地使柱塞往復運動,就能不斷地把油液壓入頂升缸下腔,使重物逐漸地升起。如果打開二位二通電磁閥,頂升缸下腔的油液通過管道、電磁閥流回油箱,重物就向下移動。
2.3.3 底板油路設計
為了攜帶方便,千斤頂的結構尺寸不能太大。在傳動比一定的情況下,設計的柱塞缸的尺寸一般較小,若用管聯(lián)接,管的內徑較小,管路的油壓損失較大。液壓油一般較稠,管的內徑小使管路較易堵塞,影響千斤頂正常工作。采用底板油路不僅減少了許多管部件,以及管聯(lián)接方面的許多麻煩,簡化了系統(tǒng),同時也使油路的內徑增大。設計的底板油路如圖2.4所示。
圖2.4 底板裝配圖
底板的設計過程中充分考慮了加工的可行性。柱塞桿向外運動時,柱塞缸內的壓力變小,彈簧球1被頂開,彈簧球2將油路封住,此時液壓油吸入液壓缸。柱塞桿下壓時,柱塞缸內的壓力變大,彈簧球1將油路關閉,彈簧球2被頂開,油液被壓入頂升液壓缸。當負載需要放回時,將二位二通電磁閥打開,液壓油便可進入油箱。當油路某處堵塞時,系統(tǒng)內的油壓將增大,此時上端的安全閥彈簧被頂開,油液通過安全閥流回油箱。
2.3.4 頂升液壓缸設計
頂升液壓缸設計其結構圖如圖2.5所示
圖2.5 頂升液壓缸結構圖
為了減小液壓千斤頂的外形尺寸,便于攜帶,本次設計的頂升液壓缸采用兩級活塞驅動。第一級液壓缸的活塞桿是第二級的缸筒,伸出時,可以獲得較長的工作行程,縮回時可保持很小的結構尺寸。第一級液壓缸缸體與缸底采用焊接,缸體與缸頭采用螺紋聯(lián)接。第二級活塞與活塞桿采用整體式。活塞與缸體間采用O形密封圈密封;為了使千斤頂使用安全方便,在活塞桿端部用螺紋件聯(lián)接了一個凹槽部件與轎車上相應的凸起配合,支撐轎車。千斤頂在工作過程中,第一級活塞升到最高時,第二級開始頂出,此時系統(tǒng)內的壓力較第一級增大。
2.3.5 柱塞缸設計
柱塞缸結構圖如圖2.6所示
圖2.6柱塞缸結構圖
本次設計的柱塞缸由柱塞、彈簧、密封工作腔等組成,其工作原理是依靠密封工作腔容積大小交替變化來實現的,它是一種將機械能轉換為液壓能的能量轉換裝置,它為液壓系統(tǒng)提供具有一定壓力和流量的液體,是液壓系統(tǒng)的重要組成部分。其性能的好壞直接影響液壓系統(tǒng)工作的可靠性和穩(wěn)定性。柱塞桿的往復運動產生容積的變化配合相應的單向閥進行吸油和壓油。一般柱塞和缸體內孔都是圓柱表面,容易得到高精度的配合,密封性較好,因此效率一般較高。
2.4 電動液壓千斤頂使用注意事項
1) 使用前,應將蓄電池充足電,以免電力不足。
2) 舉升汽車時,應使發(fā)動機熄火,將變速器置于空檔位置并拉緊手制動。
3) 必要時,可以用發(fā)電機發(fā)電助力,此時使發(fā)動機工作,但一定要將變速器置于空檔,防止汽車移動傷人。汽車舉起后,應將發(fā)動機立即熄火。
4) 在汽車底下工作時,必須把汽車用可靠的支撐物安全穩(wěn)妥地支撐住,以保證安。
3 參數確定
3.1 電機選擇
圖3.1 電機
根據系統(tǒng)的具體情況,參考有關設計手冊,確定系統(tǒng)壓力p=12.5MPa,液壓缸的最大支撐重量F=1.010N
設定第二級液壓缸的上升速度v=0.005m/s
則根據公式
(3.1)
式中 d——液壓缸內徑,mm;
p——系統(tǒng)工作壓力,MPa;
F——最大支撐重量 ,N。
取d=32mm
此時液壓缸內的壓力
流量
Q——系統(tǒng)的流量,。
此時液壓缸用來支撐重物的功率為
(3.2)
(3.3)
式中 ——電機的額定功率,W;
——機械損失,即由于摩擦而使功率的損失,本系統(tǒng)中近似認為兩個液壓缸的效率相同,故用,一般=0.9。本系統(tǒng)取0.9.
——容量損失 因內泄漏、氣穴和油液在高壓下受壓縮而造成的流量上的損失,內泄露是主要原因,本設計取=1。
帶入相關數據可得
取=70W
根據機械設計手冊及網上相關資料查詢,選擇電機為12v直流、70W、n=30r/min。
驗算電機是否滿足第一級的要求:
查機械設計手冊初步選擇第一級內徑 d=50mm,則對應的外徑取D=60mm。
第一級的上升平均速度為
(3.4)
式中 Q——系統(tǒng)的流量,;
d——液壓缸內徑,mm;
——上升速度,m/s。
帶入數據可得
根據可得
(3.5)
式中 F——負載力,N;
——電機的額定功率,W;
——機械損失;
——容量損失。
滿足設計要求,同時也說明電機的選擇合理
此時系統(tǒng)的工作壓力
3.2 頂升液壓缸參數的確定
采用伸縮式套筒液壓缸,本課題設計要求伸縮量為150mm,所以采用二級液壓缸即可,該類型的液壓缸運動時,其輸出速度和輸出力都是變化的,其原理圖如下
圖3.2 頂升液壓缸原理圖
3.2.1 液壓缸的輸出力
液壓缸的輸出力為頂起重物的重力,即負載力。根據本課題的要求,千斤頂要求頂起的重量為1.0t,即最大負載是F=。
3.2.2 液壓缸工作過程中的阻力
液壓缸工作中除了要克服負載力外,還受到慣性力、運動部件的摩擦阻力、運動部件的自重、回油背壓阻力等作用。本次設計利用液壓缸的效率來近似決定液壓缸各部件的尺寸,因此,對各阻力的大小等不再做詳細的研究。
3.2.3 液壓缸的輸出速度
單桿活塞式液壓缸和柱塞式液壓缸外伸時的速度
(3.6)
式中 v——活塞的外伸速度,m/s;
Q ——進入液壓缸的流量,;
A ——活塞的作用面積,;
d ——活塞直徑,m。
第二級液壓缸的速度定為=0.002m/s
由上述公式知:第一級液壓缸的速度為
3.2.4 液壓缸的上升時間
(3.7)
活塞桿伸出時
式中 t——液壓缸的作用時間,s;
V——液壓缸的容積,;
A——液壓缸的作用面積,;
s——液壓缸行程,m;
Q——進入(或流出)液壓缸的流量,。
液壓缸上升時間為第一級和第二級的時間之和即
——第一級的運動時間,s;
——第二級的運動時間,s。
在本次設計中,查機械設計手冊,定第一級的行程為=90mm,第二級的行程為=63mm。則
3.2.5 液壓缸的儲油量
液壓缸的儲油量
(3.8)
式中 V——液壓缸的儲油量,;
A——液壓缸的作用面積,;
s——液壓缸行程,m。
根據公式的液壓缸的儲油量為
3.2.6 液壓缸輸出功率
液壓缸的輸出功率
(3.9)
式中 N——液壓缸的輸出功率,W;
F——液壓缸的輸出力,N;
v——液壓缸的輸出速度,m/s。
液壓缸的最大輸出功率為
3.2.7 液壓缸缸筒厚度計算
本次設計中采用標準液壓缸外徑,查機械設計手冊知:第一級液壓缸的參數選為,。
參數表如表3.1所示
表3.1 工程機械用液壓缸外徑系列
缸徑
mm
液壓缸外徑 mm
缸徑
mm
液壓缸外徑 mm
P≤16
MPa
20
25
31.5
P≤16
MPa
20
25
31.5
40
50
63
80
90
100
50
60
76
95
108
121
50
60
76
95
108
121
54
63.5
83
102
114
127
54
63.5.
83
102
114
127
110
125
140
160
180
200
133
146
168
194
219
245
133
146
168
194
219
245
133
152
168
194
219
245
140
152
168
194
219
245
第二級按中等壁厚計算 當時,液壓缸缸筒厚度,此時
(3.10)
式中 ——強度系數,對于無縫鋼管,=1;
C——計入壁厚公差及腐蝕的附加厚度,通常圓整到標準厚度值。
——試驗壓力,p<16MP時,=1.5P MPa
3.2.8 液壓缸油口直徑的計算
液壓缸油口直徑應根據活塞最高運動速度v和油口最高液流速度而定。本次設計中,最大速度不好確定,由電機帶動的偏心輪的運動規(guī)律,可選取平均速度的2倍代替。已知液壓缸的第二級平均速度為0.005m/s.即可取v =0.01m/s.管內液體的流動速度定為=2m/s。
(3.11)
式中 ——液壓缸油口直徑,m;
d ——液壓缸直徑,m;
v ——液壓缸最大輸出速度,m/s;
——油口液流速度,m/s。
根據加工的需要,取油口直徑=4mm
3.2.9 缸底厚度的計算
圖3.3 有孔平行缸底
本設計采用的是平行缸底,當缸底有油口時:
(3.12)
式中 h——缸底的厚度,mm;
d——液壓缸內徑,mm;
——缸底油口直徑,mm;
——試驗壓力,=1.5P MPa;
[]——缸底材料的需用應力,MPa。
根據上述公式
取d=10mm
3.3 吸油缸參數的計算
3.3.1 吸油缸速度計算
該液壓缸選擇柱塞式類型,選定內徑d=10mm。根據液壓缸的流量相同。即
(3.13)
式中 A——吸油缸的柱塞面積,;
——吸油缸的柱塞運動速度,m/s;
——起升液壓缸的第一級內徑面積,;
——起升液壓缸的第一級的上升速度,m/s。
則
3.3.2 作用于吸油缸柱塞上的力
已知液壓系統(tǒng)中最大壓力為p=12.44MP,則作用于柱塞上的力
吸油缸的行程
系統(tǒng)的流量與柱塞的行程、柱塞的面積以及電機的轉速有關,其關系如下
式中 d——吸油缸的內徑,mm;
h——柱塞的行程,mm;
n——電機的轉速,r/s;
Q——系統(tǒng)的流量,。
根據上述公式:
3.3.3 吸油缸壁厚的計算
按中等壁厚計算,當時,吸油缸缸筒屬于中等壁厚,此時
式中 ——強度系數,對于無縫鋼管,=1;
c——計入壁厚公差及腐蝕的附加厚度,通常圓整到標準厚度值。
帶入相關數值得:=0.112+c
?。?mm。
3.3.4 油口直徑的確定
液壓缸油口直徑應根據活塞最高運動速度v和油口最高液流速度而定。本次設計中,最大速度不好確定,由電機帶動的偏心輪的運動規(guī)律,可選取平均速度的2倍代替。已知吸油缸的平均速度為0.08m/s.即可取v =0.16m/s.管內液體的流動速度定為=2m/s.由油口的直徑計算公式
式中 ——吸油缸油口內徑,m;
d ——吸油缸直徑,m;
v ——吸油缸最大輸出速度,m/s;
——油口液流速度,m/s。
取油口直徑=4mm
3.3.5 缸底厚度的計算
本設計采用的是平行缸底,當缸有油口時
式中 h——缸底的厚度,mm;
d——液壓缸內徑,mm;
——試驗壓力,=1.5P. MPa;
[]——缸底材料的需用應力,MPa。
根據上述公式
取d=3mm
3.4 油箱的設計
圖3.4 油箱
1—吸油管 2—網式濾油器 3—濾油網 4—通氣孔 5—回油管 6—頂蓋 7—油面指示器 8、10—隔板 9—放油塞
油箱容量的計算
油箱容量與系統(tǒng)的流量有關,一般容量可取最大流量的3-5倍。另外,油箱容量大小可從散熱角度去設計。
a) 系統(tǒng)發(fā)熱量計算 在液壓系統(tǒng)中,凡系統(tǒng)中的損失都變成熱能散發(fā)出來,在一個周期中,每一個工況其效率不同,因此損失也不同,在本次設計中,近似認為每個工況的效率相同,一個周期發(fā)熱的功率計算公式為:
(3.14)
式中 H——一個周期的平均發(fā)熱功率,W;
T——一個周期時間,s;
——第i個工況的輸入功率,W;
——第i個工況的效率;
——第i個工況的持續(xù)時間,s。
b) 散熱量計算
當忽略系統(tǒng)中其他地方的散熱,只考慮油箱散熱時,即系統(tǒng)的總發(fā)熱功率H全部由油箱散熱來考慮。這時油箱的散熱面積A的計算公式為
(3.16)
式中 A——油箱的散熱面積,;
H——油箱需要散熱的熱功率,W;
——油溫(一般以55考慮)與周圍環(huán)境溫度的溫差,;
K——散熱系數。與油箱周圍通風條件的好壞而不同,通風很差時K=8~9,良好時K=15~17.5,風扇強行冷卻時K=20~23,強迫水冷時110~175。
本次設計選擇K=9,此時散熱面積為:
0.0269
c 油箱容量的計算
設油箱的長、寬、高比值為a:b:c=1:1:1 ,邊長分別為at、bt、ct時,t的計算公式為
(3.17)
式中A——散熱面積,。
代入數據可得
則油箱的容積為V=389
由頂升液壓缸的容積為V=227知,油箱中油量一般為油箱的80%,因為故知油箱的容積可取為283,綜合油箱的其他形狀,取油箱的容積為400。
3.5 密封圈的選擇
根據系統(tǒng)壓力以及活塞的運動速度,本課題設計選擇O形橡膠密封圈,其有關圖形和尺寸公差如
時,。內徑的公差為
時,。內徑的公差為
如圖3.5所示
圖3.5 O形橡膠密封圈
相關參數如表3.2所示
表3.2 O形橡膠密封圈公差及尺寸
d1
d2
d1
d2
內徑
公差
1.80
±
0.08
2.65
±
0.09
3.55
±
0.10
5.30
±
0.13
7.00
±
0.15
內徑
公差
1.80
±
0.08
2.65
±
0.09
3.55
±
0.10
5.30
±
0.13
7.00
±
0.15
14.0
15.0
16.0
17.0
18.0
±0.17
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
51.5
53.0
54.5
56.0
58.0
60.0
61.5
63.0
65.0
67.0
69.0
71.0
73.0
75.0
77.0
80.0
±
0.44
±
0.53
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
19.0
20.0
21.2
22.4
23.5
25.0
25.8
26.5
28.0
30.0
±0.22
31.5
32.5
33.5
82.5
85.0
3.6 彈簧的設計
3.6.1 單向閥彈簧的設計
此設計要求彈簧充當單向閥的作用,不需要彈簧有很大的彈性系數,但要求彈簧有一定的剛度,在外載荷的作用下,彈簧不能發(fā)生失效變形。設計如下
圖3.6 圓柱螺旋壓縮彈簧的結構參數
根據公式
(3.18)
式中 P——彈簧負荷,MPa;
D——彈簧中徑,mm;
d——彈簧材料直徑,mm;
K——屈服系數,,其中為繞度比。
根據油口的直徑確定彈簧的外徑D= 3 mm, C=8,則d=0.375 mm,,K=0.937,取P=1N。
則<50MPa,滿足要求。
3.6.2 柱塞彈簧的設計
彈簧的材料選擇為彈簧鋼,彈簧的作用是將活塞桿推回,且推動為橫向推動,其推力初步定為P=1N,其切應力根據相關資料查詢確定為100MPa,初步定繞度比C=7。
由此初步確定彈簧材料直徑d
由知D=7d
式中P——彈簧負荷,N;
D——彈簧中徑,mm;
d——彈簧材料直徑,mm;
K——屈服系數,,其中為繞度比。
當C=7時,K=0.932。
取d=0.4mm
則D=7d=2.8mm
彈簧的材料選擇為彈簧鋼,彈簧的作用是將活塞桿推回,且推動為橫向推動,其推力初步定為P=1N,其切應力根據相關資料查詢確定為100MPa,初步定繞度比C=7。
由此初步確定彈簧材料直徑d
由,知D=7d
式中 P——彈簧負荷,N;
D——彈簧中徑,mm;
d——彈簧材料直徑,mm;
K——屈服系數,,其中為繞度比。
當C=7時,K=0.932。
取d=0.4mm
則D=7d=2.8mm
根據柱塞的設計要求知,柱塞的行程為10.2mm,所以彈簧的變形量F=10.2mm。
根據彈簧的變形量公式
mm (3.19)
式中 P——彈簧負荷,N;
D——彈簧中徑,mm;
d——彈簧材料直徑,mm;
n——彈簧有效圈數;
G——材料切變模量 ,MPa;
F——彈簧的變形量,mm。
查參數資料知
3.6.3 安全閥彈簧的設計
圖3.7 彈簧
安全閥彈簧的作用是限制系統(tǒng)的最大壓力,當系統(tǒng)壓力超過一定壓力時,油液將安全閥彈簧頂開,并通過安全閥流回油箱。安全閥彈簧選擇圓柱螺旋壓縮彈簧,其材料強度要求相對較高。從安全和實際工作角度考慮,安全閥能承受的最大的壓力要稍大于系統(tǒng)的最大壓力,但又不能超過最大壓力太多,否則達不到保護系統(tǒng)的作用。
系統(tǒng)的壓力為中壓,根據壓力選擇彈簧的材料為硅錳彈簧鋼,因為系統(tǒng)的最大壓力為12.44MPa,故取安全閥彈簧的最大承受壓力為15MPa,其切應力根據相關資料查詢確定為100MPa,初步定繞度比C=5。
由此初步確定彈簧材料直徑d
由知D=5d
故有
式中 P——彈簧負荷,N; ;
——安全閥溢流的最小壓力;
D——彈簧中徑,mm;
d——彈簧材料直徑,mm;
K——屈服系數,,其中為繞度比。
當C=5時,K=0.915
彈簧的作用
取d= 1.8mm
則D=5d=9mm
3.7 鍵的選擇
本次設計選用的鍵為平鍵,其結構圖如下
圖3.7 平鍵聯(lián)接的剖面和尺寸
4 技術要求
4.1 缸體技術要求
a) 缸體端部的聯(lián)接結構采用焊接。如下圖
圖4.1 缸體
b) 缸體的材料
常采用20、35、45號無縫鋼管,因20號鋼機械性能略低,且不能調質,應用較少,當缸筒與缸底,缸頭,管接頭或耳軸等件需焊接時,則應采用焊接性能較好的35鋼,粗加工后調質。一般情況下,均采用45號鋼,并調質到。
缸體毛坯液可采用鍛鋼、鑄鋼或鑄鐵件。鑄鋼可采用ZG35B等材料,鑄鐵可采用HT200-HT350間的幾個牌號或球墨鑄鐵。本次設計中考慮到千斤頂結構要小巧,因此選擇的材料要較好才能滿足性能要求,故選擇45鋼。
c) 缸體的技術要求如下
1) 缸體內徑采用H8配合。本次設計采用的粗糙度為Ra1.6,且均需珩磨。
圖4.2 耳環(huán)型、柱塞型缸體
2) 本次設計中缸體內徑d的公差值可按9,10或11級精度選取,圓柱度公差值應按8級精度選取
3) 缸體端面T的垂直度公差值按7級精度選取。
4) 缸體與缸頭采用螺紋聯(lián)接,螺紋取6級精度的公制螺紋。
5) 缸體帶有耳環(huán)或銷軸,孔徑或軸線的中心線對缸體內孔軸線的垂直度公差值按9級精度選取。
6) 為了放置腐蝕和提高壽命,缸體內表面應鍍厚度為的鉻層。鍍后進行珩磨或拋光。
4.2 缸蓋技術要求
a) 缸蓋的材料
液壓缸的缸蓋可選用35鋼,45號鍛鋼或ZG35,ZG45鑄鋼HT200,HT300,HT350鑄鐵等材料。本次選用的是45鋼。
b) 缸蓋的技術要求
直徑d(基本尺寸同缸徑)、(活塞桿的緩沖孔)、(基本尺寸同活塞桿密封圈外徑)的圓柱度公差值,按10級精度選取。、與d的同軸度公差值為0.03mm。端面A、B與直徑d軸心線的垂直度公差值,按7級精度選取。導向孔的表面粗糙度為Ra1.25。
圖4.3 缸蓋
5 強度校核
這里僅對主要零部件的強度進行計算,以及一些焊接部位的計算校核。只要校核缸體與缸底焊接處的強度、螺紋聯(lián)結處的強度、安全閥彈簧的強度等。
5.1 缸體與缸蓋焊接強度校核
缸蓋連接計算
液壓缸缸底采用對焊,圖如下
圖5.1 缸底對焊
焊縫的拉應力為
(5.1)
式中 d——液壓缸直徑,mm;
——液壓缸外徑,mm;
——焊縫底徑,mm;
——焊接效率,通常?。?.7。
, 取
則a
式中 F——液壓缸輸出的最大推力,N;
在本次設計中最大壓力即為負載最大重力F=1.0N.
5.2 缸頭螺紋聯(lián)接處強度校核
缸體與缸蓋用螺紋聯(lián)接時,圖如下
圖5.2 螺紋聯(lián)接
剛體螺紋處的拉應力為:
螺紋處的切應力為:
(5.2)
合成應力為:
(5.3)
式中 F——缸體螺紋處所受的壓力 N
在壓強最大時F最大,最大為1008N.
——液壓缸內徑,mm;
——液壓缸外徑,mm;
——螺紋外徑,mm;
K——螺紋擰緊系數,靜載時,取K=1.25-1.5,動載時取K=2.5-4.
——螺紋內摩擦系數,一般?。?.12
——螺紋處的拉應力,MPa;
——螺紋處的切應力,MPa;
——合成應力,MPa;
——螺紋材料的許用應力,MPa;
——螺紋材料的屈服極限,MPa;
n ——安全系數,通常取n=1.5-2.5。
取K=2.5, =0.12, =80MPa將相關數據帶入公式知
拉應力
切應力
合成應力
5.3 底座的校核
底座承受的是柱塞缸的橫向切應力,其大小為
(5.4)
式中 ——橫向切應力,MPa;
F——柱塞對底座的壓力,N;
h ——支座寬度,m;
b——支座長度,m。
滿足要求
5.4 柱塞缸缸體校核
柱塞缸缸壁較薄,作用與缸體上的力較大,故需要校核,缸體受到的力為拉力,校核如下
式中 ——缸體橫向拉應力,MPa;
F——缸體受到的橫向拉力,N;
——缸體外徑,m;
d——缸體內徑,m。
滿足要求
結論
本次設計要求設計一種體積小、高效率、穩(wěn)定性高的車用電動液壓千斤頂。在參考了液壓傳動方面的文獻,根據其工作原理完成了對千斤頂結構設計和零件的計算校核。運用CAD對千斤頂的裝備圖和主要零件的繪制。
根據千斤頂的工作原理和設計要求 ,確定了千斤頂的結構采用了凸輪機構驅動和底板油路的設計。在對底板油路進行時設計時考慮到過載加入安全閥,保護了系統(tǒng)。通過對液壓系統(tǒng)的分析,確定該系統(tǒng)的工作壓力,結合設計的要求對電機進行了選擇。根據設計要求計算確定了頂升缸和液壓缸的壁厚等參數并進行了校核驗算。通過查表選擇了密封圈和鍵。最后確定了缸體的材料和技術要求。
在此次設計過程中,不僅把大學四年所學到的理論知識很好的運用到畢業(yè)設計中,而且培養(yǎng)了自己認真思考的能力,并加強了和同學之間進行探討和解決問題的能力。
通過本次畢業(yè)設計,培養(yǎng)我思考問題和解決問題的能力。對今后的工作將有很大的幫助,對一名即將踏入社會的大學生起到了很重要的指導作用。設計中一定存在不少問題,請老師和同學批評指正。
致謝
光陰似箭,歲月如梭,四年的大學生涯轉瞬即逝。驀然回首,不論是大二做的金工實習,大三的課程設計還是大四的參觀實習,都是學校對我們走上社會之前的專業(yè)知識的考察。那么,這次的畢業(yè)設計當然就是對我們大學四年里所有所學所知的一次綜合考驗。
完成這次畢業(yè)設計,我要感謝指導教師邱明老師,通過這次畢業(yè)設計他教會了我如何去設計,怎么去設計,以及在最初構思時,應該注意的各種問題。是他對本人的精心指導,是他的耐心教導和積極督導,才使我能按時按量完成本畢業(yè)設計。我還要感謝進行畢業(yè)設計中期檢查的各位領導和機械工程系的其他老師,他們及時的給我指出了畢業(yè)設計當中的不足,并且給予我很多完成設計的便利條件。
“三人行,必有我?guī)煛?。我還要特別感謝,我們同一個設計組的其他同學,他們給了我很多不錯的建議。
在各位老師和同學的大力幫助下,才使我的畢業(yè)設計得以完成。最后,再次對他們給予我的幫助,表示衷心的感謝!并對論文審閱老師的辛勤勞動表示敬意。
參 考 文 獻
[1] 周士昌. 液壓系統(tǒng)設計[M]. 北京: 機械工業(yè)出版社, 2003.
[2] 章宏甲, 黃宜, 王積偉. 液壓與氣壓傳動[M]. 北京: 機械工業(yè)出版社, 2000.
[3] 賈銘新. 液壓傳動與控制[M]. 北京: 國防工業(yè)出版社, 2001.
[4] 朱文堅, 黃平, 吳昌林. 機械設計[M], 北京: 高等教育出版社, 2005.
[5] 王廣懷. 液壓技術應用[M]. 北京: 哈爾濱工業(yè)出版社, 2001.
[6] 機械設計手冊編委會. 機械設計手冊[M]. 北京: 機械工業(yè)出版社, 2004.
[7] 林建亞, 何存興. 液壓元件[M]. 北京: 機械工業(yè)出版社, 1998.
[8] 張利亞. 液壓與氣壓設計手冊[M]. 北京: 機械工業(yè)出版社, 1997.
[9] 機械工業(yè)出版社. 油壓千斤頂[M]. 北京: 機械工業(yè)出版社, 2002.
[10] 隗金文, 王慧. 液壓傳動[M]. 沈陽: 東北大學出版社, 2001.12.
[11] 趙顯新. 工程機械液壓傳動裝置原理與檢測[M]. 沈陽: 遼寧科學出版社, 1996.10.
[12] 徐灝,邱宣懷,蔡春源,汪愷,余俊. 機械設計手冊[M].北京:機械工業(yè)出版社,1992.1.
[13] 成大先. 機械設計手冊.單行本.液壓傳動[M]. 北京:化學工業(yè)出版社,2004.1.
[14] 洪鐘德. 簡明機械設計手冊[M]. 上海:同濟大學出版社,2002.5.
[15] 余夢生,吳宗澤.機械零部件手冊[M].北京:機械工業(yè)出版社,1996.6.
[16] 成大先. 機械設計手冊.單行本.潤滑與密封[M].北京:化學工業(yè)出版社,2004.1.
[17] 姚興軍,汪曉云,唐建文.AutoCAD2004中文版機械設計手冊[M]. 北京:兵器工業(yè)出版社,北京希望電子出版社,2004.12.
[18] 范云霄.實用三維機械[M].徐州:中國礦業(yè)大學出版社,2001.9.
[19] 張利平.液壓站設計與使用[M].北京:海洋出版社,2004.2.