全國(guó)各地2015年中考數(shù)學(xué)試卷解析分類匯編(第1期)專題23 直角三角形與勾股定理
《全國(guó)各地2015年中考數(shù)學(xué)試卷解析分類匯編(第1期)專題23 直角三角形與勾股定理》由會(huì)員分享,可在線閱讀,更多相關(guān)《全國(guó)各地2015年中考數(shù)學(xué)試卷解析分類匯編(第1期)專題23 直角三角形與勾股定理(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、直角三角形與勾股定理 一.選擇題 1. (2015遼寧大連,8,3分)如圖,在△ABC中,∠C=90°,AC=2,點(diǎn)D在BC上,∠ADC=2∠B,AD=,則BC的長(zhǎng)為( ) A.-1 B.+1 C.-1 D.+1 【答案】D 【解析】解:在△ADC中,∠C=90°,AC=2,所以CD=, 因?yàn)椤螦DC=2∠B,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=,所以BC=+1,故選D. 2.(2015?四川南充,第9題3分)如圖,菱形ABCD的周長(zhǎng)為8cm,高AE長(zhǎng)為cm,則對(duì)角線AC長(zhǎng)和BD長(zhǎng)之比為( ) (A)1:2
2、 (B)1:3 (C)1: (D)1: 【答案】D 【解析】 試題分析:設(shè)AC與BD的交點(diǎn)為O,根據(jù)周長(zhǎng)可得AB=BC=2,根據(jù)AE=可得BE=1,則△ABC為等邊三角形,則AC=2,BO=,即BD=2,即AC:BD=1:. 考點(diǎn):菱形的性質(zhì)、直角三角形. 圖5 3.(2015?四川資陽(yáng),第9題3分)如圖5,透明的圓柱形容器(容器厚度忽略不計(jì))的高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離容器底部3 cm的點(diǎn)B處有一飯粒,此時(shí)一只螞蟻正好在容器外壁,且離容器上沿3 cm的點(diǎn)A處,則螞蟻吃到飯粒需爬行的最短路徑是 A.13cm B.cm C.cm
3、D.cm 考點(diǎn):平面展開-最短路徑問題.. 分析:將容器側(cè)面展開,建立A關(guān)于EF的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長(zhǎng)度即為所求. 解答:解:如圖: ∵高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離容器底部3cm的點(diǎn)B處有一飯粒, 此時(shí)螞蟻正好在容器外壁,離容器上沿3cm與飯粒相對(duì)的點(diǎn)A處, ∴A′D=5cm,BD=12﹣3+AE=12cm, ∴將容器側(cè)面展開,作A關(guān)于EF的對(duì)稱點(diǎn)A′, 連接A′B,則A′B即為最短距離, A′B= = =13(Cm). 故選:A. 點(diǎn)評(píng):本題考查了平面展開﹣﹣﹣?zhàn)疃搪窂絾栴},將圖形展開,利用軸對(duì)稱的性質(zhì)和勾股定理進(jìn)行計(jì)
4、算是解題的關(guān)鍵.同時(shí)也考查了同學(xué)們的創(chuàng)造性思維能力. 4. (2015?浙江濱州,第10題3分)如圖,在直角的內(nèi)部有一滑動(dòng)桿.當(dāng)端點(diǎn)沿直線向下滑動(dòng)時(shí),端點(diǎn)會(huì)隨之自動(dòng)地沿直線向左滑動(dòng).如果滑動(dòng)桿從圖中處滑動(dòng)到處,那么滑動(dòng)桿的中點(diǎn)所經(jīng)過的路徑是( ) A.直線的一部分 B.圓的一部分 C.雙曲線的一部分 D.拋物線的一部分 【答案】B 【解析】 試題分析:根據(jù)題意和圖形可知△AOB始終是直角三角形,點(diǎn)C為斜邊上的中點(diǎn),根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可知OC始終等于AB的一半,O點(diǎn)為定點(diǎn),OC為定長(zhǎng),所以它始終是圓的一部分. 故選B 考點(diǎn):直角三角
5、形斜邊上的中線等于斜邊的一半 5. (2015?浙江湖州,第9題3分)如圖,AC是矩形ABCD的對(duì)角線,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG,點(diǎn)F,G分別在AD,BC上,連結(jié)OG,DG,若OG⊥DG,且☉O的半徑長(zhǎng)為1,則下列結(jié)論不成立的是( ) A. CD+DF=4 B. CD?DF=2?3 C. BC+AB=2+4 D. BC?AB=2 【答案】A. 【解析】 試題分析:如圖,設(shè)⊙O與BC的切點(diǎn)為M,連接MO并延長(zhǎng)MO交AD于點(diǎn)N,利用“AAS”易證△OMG≌△GCD,所以O(shè)M=GC=1, CD=GM=BC-BM-G
6、C=BC-2.又因AB=CD,所以可得BC?AB=2.設(shè)AB=a,BC=b,AC=c, ⊙O的半徑為r,⊙O是Rt△ABC的內(nèi)切圓可得r=(a+b-c),所以c=a+b-2. 在Rt△ABC中,由勾股定理可得,整理得2ab-4a-4b+4=0,又因BC?AB=2即b=2+a,代入可得2a(2+a)-4a-4(2+a)+4=0,解得,所以,即可得BC+AB=2+4. 再設(shè)DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得,所以CD?DF=,CD+DF=.綜上只有選項(xiàng)A錯(cuò)誤,故答案選A. 考點(diǎn):矩形的性質(zhì);直角三角形內(nèi)切圓的半徑與三邊的關(guān)系;折疊的性質(zhì);勾股定理;
7、 6. (2015?浙江嘉興,第7題4分)如圖,中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則☉C的半徑為(▲) (A)2.3 (B)2.4 (C)2.5 (D)2.6 考點(diǎn):切線的性質(zhì);勾股定理的逆定理.. 分析:首先根據(jù)題意作圖,由AB是⊙C的切線,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根據(jù)勾股定理求得AB的長(zhǎng),然后由S△ABC=AC?BC=AB?CD,即可求得以C為圓心與AB相切的圓的半徑的長(zhǎng). 解答:解:在△ABC中, ∵AB=5,BC=3,AC=4, ∴AC2+BC2=32+42
8、=52=AB2, ∴∠C=90°, 如圖:設(shè)切點(diǎn)為D,連接CD, ∵AB是⊙C的切線, ∴CD⊥AB, ∵S△ABC=AC?BC=AB?CD, ∴AC?BC=AB?CD, 即CD===, ∴⊙C的半徑為, 故選B. 點(diǎn)評(píng):此題考查了圓的切線的性質(zhì),勾股定理,以及直角三角形斜邊上的高的求解方法.此題難度不大,解題的關(guān)鍵是注意輔助線的作法與數(shù)形結(jié)合思想的應(yīng)用. 8. (2015?四川樂山,第7題3分)如圖,已知△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,則cosA的值為( ) A. B. C. D. 【答案】D. 考點(diǎn):1.銳角三角函
9、數(shù)的定義;2.勾股定理;3.勾股定理的逆定理;4.格型. 9, (2015?四川眉山,第10題3分)如圖,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜邊AC,交AB于D,E是垂足,連接CD.若BD=1,則AC的長(zhǎng)是( ?。? A. 2 B. 2 C. 4 D. 4 考點(diǎn): 含30度角的直角三角形;線段垂直平分線的性質(zhì);勾股定理.. 分析: 求出∠ACB,根據(jù)線段垂直平分線的性質(zhì)求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根據(jù)含30°角的直角三角形性質(zhì)求出AC即可. 解答: 解:∵在Rt△ABC中,∠
10、B=90°,∠A=30°, ∴∠ACB=60°, ∵DE垂直平分斜邊AC, ∴AD=CD, ∴∠ACD=∠A=30°, ∴∠DCB=60°﹣30°=30°, 在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1, ∴CD=2BD=2, 由勾股定理得:BC==, 在Rt△ABC中,∠B=90°,∠A=30°,BC=, ∴AC=2BC=2, 故選A. 點(diǎn)評(píng): 本題考查了三角形內(nèi)角和定理,等腰三角形的性質(zhì),勾股定理,含30度角的直角三角形性質(zhì)的應(yīng)用,解此題的關(guān)鍵是求出BC的長(zhǎng),注意:在直角三角形中,如果有一個(gè)角等于30°,那么它所對(duì)的直角邊等于斜邊的一半. 10.
11、(2015?浙江省臺(tái)州市,第8題)如果將長(zhǎng)為6cm,寬為5cm的長(zhǎng)方形紙片折疊一次,那么這條折痕的長(zhǎng)不可能是( ) A.8cm B.cm C.5.5cm D.1cm 二.填空題 1、(2015?四川自貢,第13題4分)已知,是⊙O的一條直徑 ,延長(zhǎng)至點(diǎn),使,與⊙O相切于點(diǎn),若,則劣弧的長(zhǎng)為 . 考點(diǎn):圓的基本性質(zhì)、切線的性質(zhì)、直角三角形的性質(zhì)、勾股 定理、弧長(zhǎng)公式等. 分析:本題劣弧的長(zhǎng)關(guān)鍵是求出圓的半徑和劣弧所對(duì)的 圓心角的度數(shù).在連接OD后,根據(jù)切線的性質(zhì)易知,圓的半徑和圓心角的度數(shù)可
12、以通過Rt△獲得解決. 略解:連接半徑OD.又∵與⊙O相切于點(diǎn) ∴ ∴ ∵ ∴ ∴ 又 ∴ ∴在Rt△ ∴ ∴ ∴在Rt△根據(jù)勾股定理可知: ∵ ∴ 解得: 則劣弧的長(zhǎng)為. 故應(yīng)填 2. (2015?浙江濱州,第17題4分)如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后頂點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為 . 【答案】(10,3) 考點(diǎn):折疊的性質(zhì),勾股定理 3. (2015?四川省內(nèi)江市,第22題,6分)在△ABC中,∠B=30°,AB=1
13、2,AC=6,則BC= 6?。? 考點(diǎn): 含30度角的直角三角形;勾股定理.. 分析: 由∠B=30°,AB=12,AC=6,利用30°所對(duì)的直角邊等于斜邊的一半易得△ABC是直角三角形,利用勾股定理求出BC的長(zhǎng). 解答: 解:∵∠B=30°,AB=12,AC=6, ∴△ABC是直角三角形, ∴BC===6, 故答案為:6.° 點(diǎn)評(píng): 此題考查了含30°直角三角形的性質(zhì),以及勾股定理,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵. 4.(2015?江蘇泰州,第16題3分)如圖, 矩形中,AB=8,BC=6,P為AD上一點(diǎn), 將△ABP 沿BP翻折至△EBP, PE與CD相
14、交于點(diǎn)O,且OE=OD,則AP的長(zhǎng)為__________. 【答案】4.8. 【解析】 試題分析:由折疊的性質(zhì)得出EP=AP, ∠E=∠A=90°,BE=AB=8,由ASA證明△ODP≌△OEG,得出OP=OG,PD=GE,設(shè)AP=EP=x,則PD=GE=6-x,DG=x,求出CG、BG,根據(jù)勾股定理得出方程,解方程即可. 試題解析:如圖所示: ∵四邊形ABCD是矩形 ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8 根據(jù)題意得:△ABP≌△EBP, ∴EP=AP,∠E=∠A=90°,BE=AB=8, 在△ODP和△OEG中 ∴△ODP≌△OEG
15、 ∴OP=OG,PD=GE, ∴DG=EP 設(shè)AP=EP=x,則PD=GE=6-x,DG=x, ∴CG=8-x,BG=8-(6-x)=2+x 根據(jù)勾股定理得:BC2+CG2=BG2 即:62+(8-x)2=(x+2)2 解得:x=4.8 ∴AP=4.8. 考點(diǎn):1.翻折變換(折疊問題);2.勾股定理;3.矩形的性質(zhì). 5.(2015?江蘇徐州,第17題3分)如圖,正方形ABCD的邊長(zhǎng)為1,以對(duì)角線AC為邊作第二個(gè)正方形,再以對(duì)角線AE為邊作第三個(gè)正方形AEGH,如此下去,第n個(gè)正方形的邊長(zhǎng)為?。ǎ﹏﹣1?。? 考點(diǎn): 正方形的性質(zhì).. 專題: 規(guī)律型. 分析: 首先求
16、出AC、AE、HE的長(zhǎng)度,然后猜測(cè)命題中隱含的數(shù)學(xué)規(guī)律,即可解決問題. 解答: 解:∵四邊形ABCD為正方形, ∴AB=BC=1,∠B=90°, ∴AC2=12+12,AC=; 同理可求:AE=()2,HE=()3…, ∴第n個(gè)正方形的邊長(zhǎng)an=()n﹣1. 故答案為()n﹣1. 點(diǎn)評(píng): 該題主要考查了正方形的性質(zhì)、勾股定理及其應(yīng)用問題;應(yīng)牢固掌握正方形有關(guān)定理并能靈活運(yùn)用. 6.(2015?山東東營(yíng),第17題4分)如圖,一只螞蟻沿著邊長(zhǎng)為2的正方體表面從點(diǎn)A出發(fā),經(jīng)過3個(gè)面爬到點(diǎn)B,如果它運(yùn)動(dòng)的路徑是最短的,則AC的長(zhǎng)為 . 【答案】.
17、考點(diǎn):1.正方體的側(cè)面展開圖;2.最值問題;3.勾股定理. 7.(2015?廣東廣州,第16題3分)如圖,四邊形ABCD中,∠A=90°,AB=3,AD=3,點(diǎn)M,N分別為線段BC,AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E,F(xiàn)分別為DM,MN的中點(diǎn),則EF長(zhǎng)度的最大值為 3 . 考點(diǎn): 三角形中位線定理;勾股定理. 專題: 動(dòng)點(diǎn)型. 分析: 根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時(shí),EF最大,因?yàn)镹與B重合時(shí)DN最大,此時(shí)根據(jù)勾股定理求得DN=DB=6,從而求得EF的最大值為3. 解答: 解:∵ED=EM,MF=FN, ∴EF=DN, ∴DN最大時(shí)
18、,EF最大, ∵N與B重合時(shí)DN最大, 此時(shí)DN=DB==6, ∴EF的最大值為3. 故答案為3. 點(diǎn)評(píng): 本題考查了三角形中位線定理,勾股定理的應(yīng)用,熟練掌握定理是解題的關(guān)鍵. 8.(2015?泉州第11題4分)如圖,在正三角形ABC中,AD⊥BC于點(diǎn)D,則∠BAD= 30° °. 解:∵△ABC是等邊三角形, ∴∠BAC=60°, ∵AB=AC,AD⊥BC, ∴∠BAD=∠BAC=30°, 故答案為:30°. 9.(2015?湖南株洲,第15題3分)如圖是“趙爽弦圖”,△ABH、△BCG、△CDF和△DAE是四個(gè)全等的直角三角形,四邊形ABCD和EFGH都是正方
19、形,如果AB=10,EF=2,那么AH等于 【試題分析】 本題考點(diǎn)為:全等三角形的對(duì)應(yīng)邊相等,直角三角形的勾股定理,正方形的邊長(zhǎng)相等; 由全等可知:AH=DE,AE=AH+HE 由直角三角形可得:,代入可得 答案為:6 10.(2015?江蘇無錫,第17題2分)已知:如圖,AD、BE分別是△ABC的線和角平分線,AD⊥BE,AD=BE=6,則AC的長(zhǎng)等于 _________?。? 考點(diǎn): 三角形位線定理;勾股定理. 專題: 計(jì)算題. 分析: 延長(zhǎng)AD至F,使DF=AD,過點(diǎn)F作平行BE與AC延長(zhǎng)線交于點(diǎn)G,過點(diǎn)C作CH∥BE,交AF于點(diǎn)H,連接BF,如圖
20、所示,在直角三角形AGF,利用勾股定理求AG的長(zhǎng),利用SAS證得△BDF≌△CDA,利用全等三角形對(duì)應(yīng)角相等得到∠ACD=∠BFD,證得AG∥BF,從而證得四邊形EBFG是平行四邊形,得到FG=BE=6,利用AAS得到三角形BOD與三角形CHD全等,利用全等三角形對(duì)應(yīng)邊相等得到OD=DH=3,得AH=9,然后根據(jù)△AHC∽△AFG,對(duì)應(yīng)邊成比例即可求得AC. 解答: 解:延長(zhǎng)AD至F,使DF=AD,過點(diǎn)F作FG∥BE與AC延長(zhǎng)線交于點(diǎn)G,過點(diǎn)C作CH∥BE,交AF于點(diǎn)H,連接BF,如圖所示, 在Rt△AFG,AF=2AD=12,F(xiàn)G=BE=6, 根據(jù)勾股定理得:AG==6, 在△BDF
21、和△CDA, ∴△BDF≌△CDA(SAS), ∴∠ACD=∠BFD, ∴AG∥BF, ∴四邊形EBFG是平行四邊形, ∴FG=BE=6, 在△BOD和△CHD, , ∴△BOD≌△CHD(AAS), ∴OD=DH=3, ∵CH∥FG, ∴△AHC∽△AFG, ∴=,即=, 解得:AC=, 故答案為: 點(diǎn)評(píng): 本題考查了三角形全等的判定和性質(zhì),三角形相似的判定和性質(zhì),平行四邊形的判定和性質(zhì)以及勾股定理的應(yīng)用,作輔助線構(gòu)建直角三角形和平行四邊形是解題的關(guān)鍵. 11.(2015·湖北省武漢市,第16題3分)如圖,∠AOB=30°,點(diǎn)M、N分別在邊OA、OB
22、上,且OM=1,ON=3,點(diǎn)P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是_________ 【解析】作M關(guān)于ON對(duì)稱點(diǎn)M1,點(diǎn)N關(guān)于OA的對(duì)稱點(diǎn)N1,連接M1N1分別交OA、ON于Q,P,此時(shí)MP+PQ+NQ的值最小.由對(duì)稱性質(zhì)知,M1P=MP,N1Q=NQ,所以MP+PQ+NQ= M1N1.連接ON1、OM1,則∠M1OP=∠POM=∠N1OM=30°,所以∠N1OM1=90°.又ON1=ON=3,OM1 =OM=1,所以M1N1==. 【指點(diǎn)迷津】線段和的最小值問題,一般都是將幾條線段轉(zhuǎn)化為同一條線段長(zhǎng)度,根據(jù)兩點(diǎn)之間線段最短來說明.一般是通
23、過做對(duì)稱點(diǎn)轉(zhuǎn)化到同一條線段上,根據(jù)勾股定理計(jì)算最小值.
三.解答題
1. (2015遼寧大連,24,11分)如圖1,在△ABC中,∠C=90°,點(diǎn)D在AC上,且CD>DA,DA=2.點(diǎn)P、Q同時(shí)從D點(diǎn)出發(fā),以相同的速度分別沿射線DC、射線DA運(yùn)動(dòng)。過點(diǎn)Q作AC的垂線段QR,使QR=PQ,聯(lián)接PR.當(dāng)點(diǎn)Q到達(dá)A時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng)。設(shè)PQ=x.△PQR和△ABC重合部分的面積為S.S關(guān)于x的函數(shù)圖像如圖2所示(其中0 24、 圖1 圖2
(第24題)
【答案】(1)(2)當(dāng)0 25、
因?yàn)椤鰽QE∽△AQ1R1,,所以QE=
設(shè)FG=PG=m
因?yàn)椤鰽GF∽△AQ1R1,,所以AG=2+-m,
所以m=
所以S=
=
=
所以S=
故答案為:當(dāng)0 26、的長(zhǎng).
【答案】略;45°;
【解析】
試題分析:根據(jù)旋轉(zhuǎn)得到AP=AP′ ∠BAP′=∠DAP,從而得出∠PAP′=90°,得到等腰直角三角形;根據(jù)Rt△APP′得出PP′的大小,然后結(jié)合BP′和BP的長(zhǎng)度得到,從而得出△BPP′是直角三角形,然后計(jì)算∠BPQ的大??;過點(diǎn)B作BM⊥AQ于M,根據(jù)∠BPQ=45°得到△PMB為等腰直角三角形,根據(jù)已知得出BM和AM的長(zhǎng)度,根據(jù)Rt△ABM的勾股定理求出AB,根據(jù)△ABM∽△AQB得出AQ的長(zhǎng)度,最后根據(jù)Rt△ABO的勾股定理得出BQ的長(zhǎng)度,根據(jù)QC=BC-BQ得出答案.
試題解析:(1)、證明:由旋轉(zhuǎn)可得:AP=AP′ ∠BAP 27、′=∠DAP
∴∠PAP′=∠PAB+∠BAP′=∠PAB+∠DAP=∠BAD=90° ∴△APP′是等腰直角三角形
(3)、過點(diǎn)B作BM⊥AQ于M ∵∠BPQ=45° ∴△PMB為等腰直角三角形
由已知,BP=2 ∴BM=PM=2 ∴AM=AP+PM=3 在Rt△ABM中,AB=
∵△ABM∽△AQB ∴ ∴AQ=
在Rt△ABO中,BQ= ∴QC=BC-BQ=-=
考點(diǎn):旋轉(zhuǎn)圖形的性質(zhì)、勾股定理、三角形相似.
3. (2015?浙江杭州,第19題8分)
如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′?O 28、P=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”,如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′、B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長(zhǎng).
【答案】解:∵⊙O的半徑為4,點(diǎn)A′、B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),點(diǎn)B在⊙O上, OA=8,
∴,即.
∴.∴點(diǎn)B的反演點(diǎn)B′與點(diǎn)B重合.
如答圖,設(shè)OA交⊙O于點(diǎn)M,連接B′M,
∵OM=OB′,∠BOA=60°,∴△OB′M是等邊三角形.
∵,∴B′M⊥OM.
∴在中,由勾股定理得.
【考點(diǎn)】新定義;等邊三角形的判定和性質(zhì);勾股定理.
【分析】先根據(jù)定義求出,再作輔助線:連接點(diǎn)B′與 29、OA和⊙O的交點(diǎn)M,由已知∠BOA=60°判定△OB′M是等邊三角形,從而在中,由勾股定理求得A′B′的長(zhǎng).
4. (2015?浙江麗水,第19題6分)如圖,已知△ABC,∠C=Rt∠,AC 30、的性質(zhì);直角三角形兩銳角的關(guān)系;等腰三角形的性質(zhì).
【分析】(1)因?yàn)榈紸,B兩點(diǎn)的距離相等在線段AB的垂直平分線上,因此,點(diǎn)D是線段AB的垂直平分線與BC的交點(diǎn),據(jù)此作圖即可.
(2)根據(jù)直角三角形兩銳角互余,求出∠BAC,根據(jù)等腰三角形等邊對(duì)等角的性質(zhì),求出∠BAD,從而作差求得∠CAD的度數(shù).
5.(2015?江蘇徐州,第25題8分)如圖,平面直角坐標(biāo)系中,將含30°的三角尺的直角頂點(diǎn)C落在第二象限.其斜邊兩端點(diǎn)A、B分別落在x軸、y軸上,且AB=12cm
(1)若OB=6cm.
①求點(diǎn)C的坐標(biāo);
②若點(diǎn)A向右滑動(dòng)的距離與點(diǎn)B向上滑動(dòng)的距離相等,求滑動(dòng)的距離;
(2)點(diǎn) 31、C與點(diǎn)O的距離的最大值= 12 cm.
考點(diǎn): 相似形綜合題..
分析: (1)①過點(diǎn)C作y軸的垂線,垂足為D,利用含30°角的直角三角形的性質(zhì)解答即可;
②設(shè)點(diǎn)A向右滑動(dòng)的距離為x,得點(diǎn)B向上滑動(dòng)的距離也為x,利用三角函數(shù)和勾股定理進(jìn)行解答;
(2)過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,證明△ACE與△BCD相似,再利用相似三角形的性質(zhì)解答.
解答: 解:(1)①過點(diǎn)C作y軸的垂線,垂足為D,如圖1:
在Rt△AOB中,AB=12,OB=6,則BC=6,
∴∠BAO=30°,∠ABO=60°,
又∵∠CBA=60°,
∴∠CBD=60°,∠BCD=30° 32、,
∴BD=3,CD=3,
所以點(diǎn)C的坐標(biāo)為(﹣3,9);
②設(shè)點(diǎn)A向右滑動(dòng)的距離為x,根據(jù)題意得點(diǎn)B向上滑動(dòng)的距離也為x,如圖2:
AO=12×cos∠BAO=12×cos30°=6.
∴A'O=6﹣x,B'O=6+x,A'B'=AB=12
在△A'O B'中,由勾股定理得,
(6﹣x)2+(6+x)2=122,
解得:x=6(﹣1),
∴滑動(dòng)的距離為6(﹣1);
(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3:
則OE=﹣x,OD=y,
∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
∴∠ACE=∠DCB,
又∵∠AEC=∠BDC=90°,
∴△ACE∽△BCD,
∴,即,
∴y=﹣x,
OC2=x2+y2=x2+(﹣x)2=4x2,
∴當(dāng)|x|取最大值時(shí),即C到y(tǒng)軸距離最大時(shí),OC2有最大值,即OC取最大值,如圖,即當(dāng)C'B'旋轉(zhuǎn)到與y軸垂直時(shí)
.此時(shí)OC=12,
故答案為:12.
點(diǎn)評(píng): 此題考查相似三角形的綜合題,關(guān)鍵是根據(jù)相似三角形的性質(zhì)和勾股定理以及三角函數(shù)進(jìn)行分析解答.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 運(yùn)煤設(shè)備的運(yùn)行和檢修
- 各種煤礦安全考試試題-8
- 窯主、副操作員考試試題(附答案)
- 煤礦安全基礎(chǔ)知識(shí)問答題含解析-3
- 井巷掘進(jìn)常見事故及預(yù)防措施總結(jié)
- 某礦業(yè)公司高處作業(yè)安全管理制度
- 非煤礦山現(xiàn)場(chǎng)安全管理
- 常見礦物的簡(jiǎn)易鑒定特征表
- 井下作業(yè)英語(yǔ)100句含中文翻譯
- 瓦斯安全治理理念二十條
- 煤礦電氣設(shè)備失爆原因與預(yù)防措施分析
- 煤礦煤礦運(yùn)料工安全操作規(guī)程
- 煤礦安全培訓(xùn)考試試題之簡(jiǎn)答題含答案
- 煤礦常見疾病預(yù)防與救治
- 煤礦綜采維修電工操作規(guī)程