九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

浙江省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù)第2講 函數(shù)與方程及函數(shù)的應(yīng)用 文

上傳人:zhu****ng 文檔編號:150572764 上傳時間:2022-09-09 格式:DOC 頁數(shù):10 大小:7.69MB
收藏 版權(quán)申訴 舉報 下載
浙江省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù)第2講 函數(shù)與方程及函數(shù)的應(yīng)用 文_第1頁
第1頁 / 共10頁
浙江省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù)第2講 函數(shù)與方程及函數(shù)的應(yīng)用 文_第2頁
第2頁 / 共10頁
浙江省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù)第2講 函數(shù)與方程及函數(shù)的應(yīng)用 文_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《浙江省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù)第2講 函數(shù)與方程及函數(shù)的應(yīng)用 文》由會員分享,可在線閱讀,更多相關(guān)《浙江省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題二 函數(shù)與導(dǎo)數(shù)第2講 函數(shù)與方程及函數(shù)的應(yīng)用 文(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題二 函數(shù)與導(dǎo)數(shù)第2講 函數(shù)與方程及函數(shù)的應(yīng)用 真題試做 1.(2012·湖南高考,文9)設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當x∈[0,π]時,0<f(x)<1;當x∈(0,π)且x≠時,f′(x)>0,則函數(shù)y=f(x)-sin x在[-2π,2π]上的零點個數(shù)為(  ). A.2 B.4 C.5 D.8 2.(2012·浙江高考,文10)設(shè)a>0,b>0,e是自然對數(shù)的底數(shù),(  ). A.若ea+2a=eb+3b,則a>b B.若ea+2a=eb+3b,則a<b C.若ea-2a=eb-3

2、b,則a>b D.若ea-2a=eb-3b,則a<b 3.(2012·山東高考,文15)若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=__________. 4.(2012·課標全國高考,文16)設(shè)函數(shù)f(x)=的最大值為M,最小值為m,則M+m=__________. 5.(2012·陜西高考,文21)設(shè)函數(shù)f(x)=xn+bx+c(n∈N+,b,c∈R). (1)設(shè)n≥2,b=1,c=-1,證明:f(x)在區(qū)間內(nèi)存在唯一零點; (2)設(shè)n為偶數(shù), |f(-1)|≤1,|f(1)|≤1,

3、求b+3c的最小值和最大值; (3)設(shè)n=2,若對任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范圍. 6.(2012·江蘇高考,17)如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米,某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx-(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標. (1)求炮的最大射程; (2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由. 考向分析 通過分析近三年的高考試題

4、可以看到對函數(shù)與方程的考查主要體現(xiàn)在以下幾個方面:一、結(jié)合函數(shù)與方程的關(guān)系,求函數(shù)的零點;二、結(jié)合根的存在性定理或函數(shù)的圖象,對函數(shù)是否存在零點(方程是否存在實根)進行判斷;三、利用零點(方程實根)的存在求相關(guān)參數(shù)的值或范圍.對函數(shù)的實際應(yīng)用問題的考查,題目大多以社會實際生活為背景,設(shè)問新穎、靈活,而解決這些問題所涉及的數(shù)學(xué)知識、數(shù)學(xué)思想和方法又都是高中教材和課標中所要求掌握的概念、公式、法則、定理等基礎(chǔ)知識和方法. 熱點例析 熱點一 確定函數(shù)的零點 【例1】設(shè)函數(shù)f(x)=x-ln x(x>0),則y=f(x)(  ). A.在區(qū)間,(1,e)內(nèi)均有零點 B.在區(qū)間,(1,e)

5、內(nèi)均無零點 C.在區(qū)間內(nèi)有零點,在區(qū)間(1,e)內(nèi)無零點 D.在區(qū)間內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點 規(guī)律方法 確定函數(shù)零點的常用方法: (1)解方程判定法,方程易解時用此法; (2)利用零點存在的判定定理; (3)利用數(shù)形結(jié)合,尤其是那些方程兩端對應(yīng)的函數(shù)類型不同時多以數(shù)形結(jié)合法求解. 變式訓(xùn)練1 方程|x|=cos x在(-∞,+∞)內(nèi)(  ). A.沒有根 B.有且僅有一個根 C.有且僅有兩個根 D.有無窮多個根 熱點二 函數(shù)零點的應(yīng)用 【例2】(1)m為何值時,f(x)=x2+2mx+3m+4, ①有且僅有一個零點? ②有兩個零點且均比-1大? (2)

6、若函數(shù)F(x)=|4x-x2|+a有4個零點,求實數(shù)a的取值范圍. 規(guī)律方法 解決由函數(shù)零點(方程根)的存在情況求參數(shù)的值或取值范圍問題,關(guān)鍵是利用函數(shù)方程思想或數(shù)形結(jié)合思想,構(gòu)建關(guān)于參數(shù)的方程或不等式求解,再者,對于存在零點求參數(shù)范圍問題,可通過分離參數(shù),從而轉(zhuǎn)化為求函數(shù)值域問題. 變式訓(xùn)練2 已知函數(shù)f(x)=若關(guān)于x的方程f(x)=k有兩個不同的實根,則實數(shù)k的取值范圍是__________. 熱點三 函數(shù)的實際應(yīng)用 【例3】某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的容積為立方米,且l≥2r.假設(shè)該容器的建

7、造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為c(c>3)千元.設(shè)該容器的建造費用為y千元. (1)寫出y關(guān)于r的函數(shù)表達式,并求該函數(shù)的定義域; (2)求該容器的建造費用最小時的r. 規(guī)律方法 應(yīng)用函數(shù)知識解應(yīng)用題的步驟: (1)正確地將實際問題轉(zhuǎn)化為函數(shù)模型,這是解應(yīng)用題的關(guān)鍵.轉(zhuǎn)化來源于對已知條件的綜合分析、歸納與抽象,并與熟知的函數(shù)模型相比較,以確定函數(shù)模型的種類. (2)用相關(guān)的函數(shù)知識,進行合理設(shè)計,確定最佳解題方案,進行數(shù)學(xué)上的計算求解. (3)把計算獲得的結(jié)果帶回到實際問題中去解釋實際問題,即對實際問題進行總結(jié)作答.

8、 變式訓(xùn)練3 某種產(chǎn)品每件成本為6元,每件售價為x元(x>6),年銷量為u萬件,若已知-u與2成正比,且售價為10元時,年銷量為28萬件. (1)求年利潤y(萬元)關(guān)于x的函數(shù)關(guān)系式; (2)求售價為多少時,年利潤最大,并求出最大年利潤. 思想滲透 函數(shù)與方程思想的含義 (1)函數(shù)的思想,是用運動和變化的觀點,分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運用函數(shù)的圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決.函數(shù)思想是對函數(shù)概念的本質(zhì)認識,用于指導(dǎo)解題就是善于利用函數(shù)知識或函數(shù)觀點觀察、分析和解決問題. (2)方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程

9、(方程組)或者構(gòu)造方程,通過解方程(方程組)或者運用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決.方程的思想是對方程概念的本質(zhì)認識,用于指導(dǎo)解題就是善于利用方程(方程組)的觀點觀察、處理問題. (3)方程的思想與函數(shù)的思想密切相關(guān):方程f(x)=0的解就是函數(shù)y=f(x)的圖象與x軸的交點的橫坐標;函數(shù)y=f(x)也可以看作二元方程f(x)-y=0,通過方程進行研究;方程f(x)=a有解,當且僅當a屬于函數(shù)f(x)的值域;函數(shù)與方程的這種相互轉(zhuǎn)化關(guān)系十分重要. 如圖所示,長方體物體E在雨中沿面P(面積為S)的垂直方向作勻速移動,速度為v(v>0),雨速沿E移動方向的分速度為c(c∈R).E移

10、動時單位時間內(nèi)的淋雨量包括兩部分:①P或P的平行面(只有一個面淋雨)的淋雨量,假設(shè)其值與|v-c|×S成正比,比例系數(shù)為;②其他面的淋雨量之和,其值為.記y為E移動過程中的總淋雨量.當移動距離d=100,面積S=時, (1)寫出y的表達式; (2)設(shè)0<v≤10,0<c≤5,試根據(jù)c的不同取值范圍,確定移動速度v,使總淋雨量y最少. 解:(1)由題意知,E移動時單位時間內(nèi)的淋雨量為|v-c|+, 故y==(3|v-c|+10). (2)由(1)知, 當0<v≤c時,y=(3c-3v+10)=-15; 當c<v≤10時,y=(3v-3c+10)=+15. 故y= ①當0<c

11、≤時,y是關(guān)于v的減函數(shù).故當v=10時,ymin=20-. ②當<c≤5時,在(0,c]上,y是關(guān)于v的減函數(shù);在(c,10]上,y是關(guān)于v的增函數(shù). 故當v=c時,ymin=. 1.(2012·浙江路橋中學(xué)月考,6)已知符號函數(shù)sgn(x)=則函數(shù)f(x)=sgn(ln x)-ln2x的零點個數(shù)為(  ). A.4 B.3 C.2 D.1 2.(2012·山東濰坊一模,12)若直角坐標平面內(nèi)的兩點P,Q滿足條件: ①P,Q都在函數(shù)y=f(x)的圖象上;②P,Q關(guān)于原點對稱. 則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”(點對[P,Q]與[Q

12、,P]看作同一對“友好點對”). 已知函數(shù)f(x)=則此函數(shù)的“友好點對”有(  ). A.0對 B.1對 C.2對 D.3對 3.(2012·浙江金華十校模擬,8)已知函數(shù)f(x)=x-tan x,若實數(shù)x0是函數(shù)y=f(x)的零點,且0<t<x0,則f(t)的值(  ). A.大于1 B.大于0 C.小于0 D.不大于0 4.(2012·浙江東陽中學(xué)3月檢測,16)若函數(shù)f(x)=x2+ax+2b在區(qū)間(0,1),(1,2)內(nèi)各有一個零點,則a2+(b-2)2的取值范圍是__________. 5.(2012·江蘇高考,10)設(shè)f

13、(x)是定義在R上且周期為2的函數(shù),在區(qū)間[-1,1]上,f(x)=其中a,b∈R.若f=f,則a+3b的值為______. 6.(2012·浙江重點中學(xué)協(xié)作體聯(lián)考,12)函數(shù)f(x)=則函數(shù)y=f(f(x))+1的所有零點所構(gòu)成的集合為__________. 7.(2012·北京高考,文12)已知函數(shù)f(x)=lg x,若f(ab)=1,則f(a2)+f(b2)=__________. 8.某市近郊有一塊大約500 m×500 m的接近正方形的荒地,地方政府準備在此建一個綜合性休閑廣場,首先要建設(shè)如圖所示的一個矩形場地,其總面積為3 000 m2,其中場地四周(陰影部分)為通道,通道寬

14、度均為2 m,中間的三個矩形區(qū)域?qū)佋O(shè)塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為S m2. (1)分別寫出用x表示y和S的函數(shù)關(guān)系式(寫出函數(shù)定義域); (2)怎樣設(shè)計能使S取得最大值,最大值為多少? 參考答案 命題調(diào)研·明晰考向 真題試做 1.B 解析:由x∈(0,π)且x≠時,f′(x)>0可知: 當x∈時,f′(x)<0,f(x)單調(diào)遞減; 當x∈時,f′(x)>0,f(x)單調(diào)遞增. 又∵x∈[0,π]時,f(x)∈(0,1),且f(x)是最小正周期為2π的偶函數(shù),可畫出f(x)的草圖為: 對于y=f(x)-sin x的零點,可在

15、同一坐標系中再作出y=sin x的圖象,可知在[-2π,2π]上零點個數(shù)為4. 2.A 解析:考查函數(shù)y=ex+2x為單調(diào)增函數(shù),若ea+2a=eb+2b,則a=b; 若ea+2a=eb+3b,∴a>b.故選A. 3. 解析:當0<a<1時,f(x)=ax在[-1,2]上的最大值為a-1=4,即a=,最小值為a2=m,從而m=,這時g(x)=,即g(x)=在[0,+∞)上是增函數(shù).當a>1時,f(x)=ax在[-1,2]上的最大值為a2=4,得a=2,最小值為a-1=m,即m=,這時g(x)=(1-4m)=-在[0,+∞)上為減函數(shù),不合題意,舍去.所以a=. 4.2 解析:f(x)=

16、=1+, 設(shè)g(x)=,則g(-x)=-g(x), ∴g(x)是奇函數(shù). 由奇函數(shù)圖象的對稱性知g(x)max+g(x)min=0, ∴M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2. 5.(1)證明:當b=1,c=-1,n≥2時,f(x)=xn+x-1. ∵f·f(1)=×1<0, ∴f(x)在內(nèi)存在零點. 又當x∈時,f′(x)=nxn-1+1>0, ∴f(x)在上是單調(diào)遞增的. ∴f(x)在內(nèi)存在唯一零點. (2) 解:方法一:由題意知即 由下圖知,b+3c在點(0,-2)取到最小值-6, 在點(0,0)取到最

17、大值0, ∴b+3c的最小值為-6,最大值為0. 方法二:由題意知 -1≤f(1)=1+b+c≤1,即-2≤b+c≤0,① -1≤f(-1)=1-b+c≤1,即-2≤-b+c≤0,② ①×2+②得 -6≤2(b+c)+(-b+c)=b+3c≤0. 當b=0,c=-2時,b+3c=-6;當b=c=0時,b+3c=0, ∴b+3c的最小值為-6,最大值為0. 方法三:由題意知 解得b=,c=, ∴b+3c=2f(1)+f(-1)-3. 又∵-1≤f(-1)≤1,-1≤f(1)≤1. ∴-6≤b+3c≤0. 當b=0,c=-2時,b+3c=-6;當b=c=0時,b+3c=

18、0, ∴b+3c的最小值為-6,最大值為0. (3)解:當n=2時,f(x)=x2+bx+c. 對任意x1,x2∈[-1,1]都有|f(x1)-f(x2)|≤4等價于f(x)在[-1,1]上的最大值與最小值之差M≤4.據(jù)此分類討論如下: ①當>1,即|b|>2時,M=|f(1)-f(-1)|=2|b|>4,與題設(shè)矛盾; ②當-1≤-<0,即0<b≤2時, M=f(1)-f=2≤4恒成立; ③當0≤-≤1,即-2≤b≤0時, M=f(-1)-f=2≤4恒成立. 綜上可知,-2≤b≤2. 6.解:(1)令y=0,得kx-(1+k2)x2=0,由實際意義和題設(shè)條件知x>0,k>0

19、, 故x==≤=10,當且僅當k=1時取等號. 所以炮的最大射程為10千米. (2)因為a>0,所以炮彈可擊中目標?存在k>0,使3.2=ka-(1+k2)a2成立?關(guān)于k的方程a2k2-20ak+a2+64=0有正根?判別式Δ=(-20a)2-4a2(a2+64)≥0?a≤6. 所以當a不超過6(千米)時,可擊中目標. 精要例析·聚焦熱點 熱點例析 【例1】D 解析:法一:∵f=·-ln =+1>0,f(1)=-ln 1=>0,f(e)=-ln e=-1<0, ∴f·f(1)>0,f(1)·f(e)<0,故y=f(x)在區(qū)間內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點. 法二:在同一

20、坐標系中分別畫出y=x與y=ln x的圖象.如圖所示. 由圖象知零點存在于區(qū)間(1,e)內(nèi). 【變式訓(xùn)練1】C 解析:在同一直角坐標系中作出函數(shù)y=|x|和y=cos x的圖象,如圖. 當x>時,y=|x|>>1,y=cos x≤1. 當x<-時,y=|x|>>1,y=cos x≤1,所以兩函數(shù)的圖象只在內(nèi)有兩個交點,所以|x|=cos x在(-∞,+∞)內(nèi)有兩個根. 【例2】解:(1)①若函數(shù)f(x)=x2+2mx+3m+4有且僅有一個零點,則等價于Δ=4m2-4(3m+4)=0, 即4m2-12m-16=0,即m2-3m-4=0,解得m=4或m=-1. ②設(shè)兩零點分別

21、為x1,x2,且x1>-1,x2>-1,x1≠x2. 則x1+x2=-2m,x1·x2=3m+4, 故只需?? 故m的取值范圍是{m|-5<m<-1}. (2)若F(x)=|4x-x2|+a有4個零點,即|4x-x2|+a=0有四個根,即|4x-x2|=-a有四個根. 令g(x)=|4x-x2|,h(x)=-a.則作出g(x)的圖象, 由圖象可知要使|4x-x2|=-a有四個根, 則需g(x)的圖象與h(x)的圖象有四個交點, ∴0<-a<4,即-4<a<0. 【變式訓(xùn)練2】(0,1) 解析:由函數(shù)圖象知,如圖所示,當0<k<1時直線y=k與函數(shù)f(x)的圖象有兩個交點,

22、即方程f(x)=k有兩個不同的實根. 【例3】解:(1)設(shè)容器的容積為V, 由題意知V=πr2l+πr3, 又V=,故l==-r=. 由于l≥2r,因此0<r≤2. 所以建造費用y=2πrl×3+4πr2c=2πr××3+4πr2c. 因此y=4π(c-2)r2+,0<r≤2. (2)由(1)得y′=8π(c-2)r- =,0<r<2. 由于c>3,所以c-2>0. 當r3-=0時,r=. 令=m,得m>0, 所以y′=(r-m)(r2+rm+m2). ①當0<m<2,即c>時, 當r=m時,y′=0; 當r∈(0,m)時,y′<0; 當r∈(m,2)時,y

23、′>0. 所以r=m是函數(shù)y的極小值點,也是最小值點. ②當m≥2,即3<c≤時, 當r∈(0,2)時,y′<0,函數(shù)單調(diào)遞減. 所以r=2是函數(shù)y的最小值點. 綜上所述,當3<c≤時,建造費用最小時r=2;當c>時,建造費用最小時r=. 【變式訓(xùn)練3】解:(1)設(shè)-u=k2, ∵售價為10元時,年銷量為28萬件, ∴-28=k2,解得k=2. ∴u=-22+=-2x2+21x+18. 即y=(-2x2+21x+18)(x-6)=-2x3+33x2-108x-108. (2)由(1)得y′=-6x2+66x-108=-6(x2-11x+18) =-6(x-2)(x-9)

24、, 由y′=0得x=2(∵x>6,∴舍去)或x=9. 顯然,當x∈(6,9)時,y′>0;當x∈(9,+∞)時,y′<0. ∴函數(shù)y=-2x3+33x2-108x-108在(6,9)上是增函數(shù), 在(9,+∞)上是減函數(shù). ∴當x=9時,y取最大值,且ymax=135. ∴售價為9元時,年利潤最大,最大年利潤為135萬元. 創(chuàng)新模擬·預(yù)測演練 1.C 解析:因為f(x)=則x=e,x=1是函數(shù)f(x)的零點,故選C. 2.C 解析:P,Q為友好點對,不妨設(shè)點P(x0,y0)(x0>0),則Q(-x0,-y0). 所以即(1) 方程組(1)的解的個數(shù)即是“友好點對”數(shù),

25、 在同一坐標系作出函數(shù)圖象(如圖),有兩個交點,所以有2對“友好點對”. 3.B 解析:分別作出函數(shù)y=x與y=tan x在區(qū)間上的圖象,得到0<x0<,且在區(qū)間(0,x0)內(nèi)函數(shù)y=x的圖象位于函數(shù)y=tan x的圖象上方,即0<x<x0時,f(x)>0,則f(t)>0,故選B. 4.(5,10) 解析:依題意有即分別以a,b為橫、縱坐標軸,作出可行域得點P(a,b)在以A(-2,0),B(-1,0),C(-3,1)為頂點的三角形(不含邊界)區(qū)域內(nèi). 而a2+(b-2)2表示點P到點Q(0,2)的距離的平方. 因為QB⊥BC,則|PQ|2>|QB|2=5. 又|QC|=>|QA|

26、=,則|PQ|2<|QC|2=10,故a2+(b-2)2的取值范圍是(5,10). 5.-10 解析:根據(jù)題意,可得 即解得 故a+3b=-10. 6. 解析:即求方程f(f(x))=-1的所有根的集合,先解方程f(t)=-1,即或得t=-2,或t=. 再解方程f(x)=-2和f(x)=. 即或和或 得x=-3或x=或x=-或x=. 7.2 解析:由已知可得,lg(ab)=1,∴f(a2)+f(b2)=lg a2+lg b2=lg(a2b2)=2lg(ab)=2×1=2. 8.解:(1)由已知xy=3 000,2a+6=y(tǒng), 則y=(6<x≤500), S=(x-4)a+(x-6)a =(2x-10)a =(2x-10)·=(x-5)(y-6) =3 030-6x-(6<x≤500). (2)S=3 030- ≤3 030-2 =3 030-2×300=2 430, 當且僅當6x=,即x=50時,等號成立. 此時x=50,y=60,Smax=2 430. 即設(shè)計成x=50,y=60時,運動場地占地面積最大,最大值為2 430 m2.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!