《(安徽專(zhuān)用)2013年高考數(shù)學(xué)總復(fù)習(xí) 第八章第5課時(shí) 曲線(xiàn)與方程課時(shí)闖關(guān)(含解析)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(安徽專(zhuān)用)2013年高考數(shù)學(xué)總復(fù)習(xí) 第八章第5課時(shí) 曲線(xiàn)與方程課時(shí)闖關(guān)(含解析)(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第八章第5課時(shí) 曲線(xiàn)與方程 課時(shí)闖關(guān)(含解析)
一、選擇題
1.(2012·無(wú)錫調(diào)研)下列各點(diǎn)在方程x2-xy+2y+1=0表示的曲線(xiàn)上的是( )
A.(0,0) B.(1,1)
C.(1,-1) D.(1,-2)
解析:選D.驗(yàn)證法,點(diǎn)(0,0)顯然不滿(mǎn)足方程x2-xy+2y+1=0,當(dāng)x=1時(shí),方程變?yōu)?-y+2y+1=0,解得y=-2,
∴(1,-2)點(diǎn)在曲線(xiàn)上.故選D.
2.已知兩點(diǎn)M(-2,0),N(2,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿(mǎn)足||·||+·=0,則動(dòng)點(diǎn)P(x,y)的軌跡方程為( )
A.y2=8x B.y2=-8x
C
2、.y2=4x D.y2=-4x
解析:選B.||=4,||=,·=4(x-2),∴4+4(x-2)=0,∴y2=-8x.
3.方程(x2+y2-4)=0的曲線(xiàn)形狀是( )
解析:選C.由題意可得或x+y+1=0.
它表示直線(xiàn)x+y+1=0和圓x2+y2-4=0在直線(xiàn)x+y+1=0右上方的部分.
4.平面直角坐標(biāo)系中,已知兩點(diǎn)A(3,1),B(-1,3),若點(diǎn)C滿(mǎn)足=λ1+λ2(O為原點(diǎn)),其中λ1,λ2∈R,且λ1+λ2=1,則點(diǎn)C的軌跡是( )
A.直線(xiàn) B.橢圓
C.圓 D.雙曲線(xiàn)
解析:選A.設(shè)C(x,y),
則=(x,y),=(3,1),=(-
3、1,3),
∵=λ1+λ2,∴,又λ1+λ2=1,
∴x+2y-5=0,表示一條直線(xiàn).
5.(2012·蘭州質(zhì)檢)一圓形紙片的圓心為O,點(diǎn)Q是圓內(nèi)異于O的一個(gè)定點(diǎn),點(diǎn)A是圓周上一動(dòng)點(diǎn),把紙片折疊使點(diǎn)A與點(diǎn)Q重合,然后展開(kāi)紙片,折痕CD與OA交于點(diǎn)P,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡為( )
A.橢圓 B.雙曲線(xiàn)
C.拋物線(xiàn) D.圓
解析:選A.∵折痕所在的直線(xiàn)是AQ的垂直平分線(xiàn),
∴|PA|=|PQ|.又∵|PA|+|OP|=r,∴|PQ|+|OP|=r>|OQ|.由橢圓的定義知點(diǎn)P的軌跡是橢圓.
二、填空題
6.設(shè)P為雙曲線(xiàn)-y2=1上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),M為線(xiàn)段OP的
4、中點(diǎn),則點(diǎn)M的軌跡方程是________.
解析:設(shè)M(x,y),則P(2x,2y),代入雙曲線(xiàn)方程得x2-4y2=1,即為所求.
答案:x2-4y2=1
7.由動(dòng)點(diǎn)P向圓x2+y2=1引兩條切線(xiàn)PA、PB,切點(diǎn)分別為A,B,∠APB=60°,則動(dòng)點(diǎn)P的軌跡方程為_(kāi)_______.
解析:在Rt△AOP中(O為坐標(biāo)原點(diǎn)),∵∠APB=60°,
∴∠APO=30°,∴PO=2OA=2,
動(dòng)點(diǎn)P的軌跡是以原點(diǎn)為圓心,2為半徑的圓,
方程為x2+y2=4.
答案:x2+y2=4
8.(2012·大同調(diào)研)直線(xiàn)+=1與x、y軸交點(diǎn)的中點(diǎn)的軌跡方程是________.
解析:設(shè)直線(xiàn)+
5、=1與x,y軸的交點(diǎn)分別為A(a,0),B(0,2-a),AB中點(diǎn)為M(x,y),則x=,y=1-,消去a,得x+y=1,∵a≠0,a≠2,∴x≠0,x≠1.
答案:x+y=1(x≠0,x≠1)
三、解答題
9.已知點(diǎn)A(1,0),直線(xiàn)l:y=2x-4,點(diǎn)R是直線(xiàn)l上的一點(diǎn),若=,求點(diǎn)P的軌跡方程.
解:∵=,
∴R,A,P三點(diǎn)共線(xiàn),且A為RP的中點(diǎn),設(shè)P(x,y),R(x1,y1),則由=,得(1-x1,-y1)=(x-1,y),則,即x1=2-x,y1=-y,將其代入直線(xiàn)y=2x-4中,得y=2x,∴點(diǎn)P的軌跡方程為y=2x.
10.已知橢圓+=1(a>b>0)的焦點(diǎn)是F1(-
6、c,0),F(xiàn)2(c,0),Q是橢圓外的動(dòng)點(diǎn),滿(mǎn)足|F1Q|=2a,點(diǎn)P是線(xiàn)段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線(xiàn)段F2Q上,并且滿(mǎn)足·=0,||≠0.
(1)設(shè)x為點(diǎn)P的橫坐標(biāo),證明|F1P|=a+x;
(2)求點(diǎn)T的軌跡C的方程.
解:(1)證明:設(shè)P(x,y),
則|F1P|2=(x+c)2+y2
=(x+c)2+b2-x2
=2.
∵x≥-a,∴a+x≥a-c>0,
∴|F1P|=a+x.
(2)設(shè)T(x,y).當(dāng)||≠0時(shí),
∵·=0,
∴PT⊥TF2.
又∵|PF1|+|PF2|=2a=|PF1|+|PQ|,
∴|PQ|=|PF2|,∴T為線(xiàn)段F2Q的中點(diǎn).
在
7、△QF1F2中,|OT|=|F1Q|=a,
即x2+y2=a2.
當(dāng)||=0時(shí),點(diǎn)(-a,0)和(a,0)在軌跡上.
綜上所述,點(diǎn)T的軌跡C的方程是x2+y2=a2.
11.設(shè)橢圓方程為x2+=1,過(guò)點(diǎn)M(0,1)的直線(xiàn)l交橢圓于A(yíng),B兩點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P滿(mǎn)足=(+),點(diǎn)N的坐標(biāo)為,當(dāng)直線(xiàn)l繞點(diǎn)M旋轉(zhuǎn)時(shí),求:
(1)動(dòng)點(diǎn)P的軌跡方程;
(2)||的最大值,最小值.
解:(1)直線(xiàn)l過(guò)定點(diǎn)M(0,1),設(shè)其斜率為k,則l的方程為y=kx+1.
設(shè)A(x1,y1),B(x2,y2),由題意知,
A、B的坐標(biāo)滿(mǎn)足方程組
消去y得(4+k2)x2+2kx-3=0.
則Δ=4k2+12(4+k2)>0.
∴x1+x2=-,x1x2=.
設(shè)P(x,y)是中點(diǎn),則=(+),得
消去k得4x2+y2-y=0.
當(dāng)斜率k不存在時(shí),AB的中點(diǎn)是坐標(biāo)原點(diǎn),
也滿(mǎn)足這個(gè)方程,
故P點(diǎn)的軌跡方程為4x2+y2-y=0.
(2)由(1)知4x2+2=,
∴-≤x≤.
而||2=2+2
=2+=-32+,
∴當(dāng)x=-時(shí),||取得最大值,
當(dāng)x=時(shí),||取得最小值.