九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2019高考數(shù)學二輪復習 專題一 三角函數(shù)與解三角形 第2講 三角恒等變換與解三角形課件.ppt

上傳人:tia****nde 文檔編號:14782699 上傳時間:2020-07-30 格式:PPT 頁數(shù):33 大?。?.68MB
收藏 版權申訴 舉報 下載
2019高考數(shù)學二輪復習 專題一 三角函數(shù)與解三角形 第2講 三角恒等變換與解三角形課件.ppt_第1頁
第1頁 / 共33頁
2019高考數(shù)學二輪復習 專題一 三角函數(shù)與解三角形 第2講 三角恒等變換與解三角形課件.ppt_第2頁
第2頁 / 共33頁
2019高考數(shù)學二輪復習 專題一 三角函數(shù)與解三角形 第2講 三角恒等變換與解三角形課件.ppt_第3頁
第3頁 / 共33頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019高考數(shù)學二輪復習 專題一 三角函數(shù)與解三角形 第2講 三角恒等變換與解三角形課件.ppt》由會員分享,可在線閱讀,更多相關《2019高考數(shù)學二輪復習 專題一 三角函數(shù)與解三角形 第2講 三角恒等變換與解三角形課件.ppt(33頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第2講三角恒等變換與解三角形,高考定位1.三角函數(shù)的化簡與求值是高考的命題熱點,其中關鍵是利用兩角和與差、二倍角的正弦、余弦、正切公式等進行恒等變換,“角”的變換是三角恒等變換的核心;2.正弦定理與余弦定理以及解三角形問題是高考的必考內(nèi)容,主要考查邊、角、面積的計算及有關的范圍問題.,答案A,真 題 感 悟,3.(2018全國卷)在平面四邊形ABCD中,ADC90,A45,AB2,BD5.,在BCD中,由余弦定理得,所以BC5.,1.三角函數(shù)公式,考 點 整 合,2.正弦定理、余弦定理、三角形面積公式,探究提高1.三角恒等變換的基本思路:找差異,化同角(名),化簡求值. 2.解決條件求值問題的

2、三個關注點 (1)分析已知角和未知角之間的關系,正確地用已知角來表示未知角. (2)正確地運用有關公式將所求角的三角函數(shù)值用已知角的三角函數(shù)值來表示. (3)求解三角函數(shù)中給值求角的問題時,要根據(jù)已知求這個角的某種三角函數(shù)值,然后結合角的取值范圍,求出角的大小.,所以cos()cos(2)(2) cos(2)cos(2)sin(2)sin(2),熱點二正弦定理與余弦定理 考法1利用正(余)弦定理進行邊角計算 【例21】 (2018濰坊一模)ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知(a2c)cos Bbcos A0.,解(1)由已知及正弦定理得 (sin A2sin C)cos Bsi

3、n Bcos A0, (sin Acos Bsin Bcos A)2sin Ccos B0, sin(AB)2sin Ccos B0, 又sin(AB)sin C,且C(0,),sin C0,,(2)由余弦定理,得9a2c22accos B. a2c2ac9,則(ac)2ac9.,由余弦定理,得b2a2c22accos B(ac)2ac,,解由b2a2c22accos Ba2c2ac, 則9a2c2ac2acacac, 所以ac9(當且僅當ac3時,取等號),,探究提高1.高考中主要涉及利用正弦、余弦定理求三角形的邊長、角、面積等基本計算,或?qū)蓚€定理與三角恒等變換相結合綜合解三角形. 2.關

4、于解三角形問題,一般要用到三角形的內(nèi)角和定理,正、余弦定理及有關三角形的性質(zhì),常見的三角變換方法和原則都適用,同時要注意“三統(tǒng)一”,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結構”,這是使問題獲得解決的突破口.,上式兩邊平方,整理得17cos2B32cos B150,,由余弦定理及ac6得 b2a2c22accos B(ac)22ac(1cos B),所以b2.,考法2應用正、余弦定理解決實際問題,【例22】 (2018衡水質(zhì)檢)某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:在C處(點C在水平地面下方,O為CH與水平地面ABO的交點)進行該儀器的垂直彈射,水平地面上兩個觀察點A,B兩

5、地相距100米,BAC60,其中A到C的距離比B到C的距離遠40米.A地測得該儀器在C處的俯角為OAC15,A地測得最高點H的仰角為HAO30,則該儀器的垂直彈射高度CH為(),解析由題意,設ACx米,則BC(x40)米, 在ABC內(nèi),由余弦定理:BC2BA2CA22BACAcosBAC, 即(x40)2x210 000100 x,解得x420(米). 在ACH中,AC420米,CAH301545,CHA903060,,答案B,探究提高1.實際問題經(jīng)抽象概括后,已知量與未知量全部集中在一個三角形中,可用正弦定理或余弦定理求解. 2.實際問題經(jīng)抽象概括后,已知量與未知量涉及兩個或兩個以上的三角形

6、,這時需作出這些三角形,先解夠條件的三角形,然后逐步求解其他三角形,有時需設出未知量,從幾個三角形中列出方程(組),解方程(組)得出所要求的解.,【訓練3】 如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)一山頂D在西偏北30的方向上,行駛600 m后到達B處,測得此山頂在西偏北75的方向上,仰角為30,則此山的高度CD________m.,解析由題意,在ABC中,BAC30,ABC18075105, 故ACB45.,又0,所以1.,設ABC中角A,B,C所對的邊分別是a,b,c.,探究提高1.破解平面向量與“三角”相交匯題的常用方法是“化簡轉(zhuǎn)化法”,即先活用誘導公式、同角三角

7、函數(shù)的基本關系式、倍角公式、輔助角公式等對三角函數(shù)進行巧“化簡”;然后把以向量共線、向量垂直形式出現(xiàn)的條件轉(zhuǎn)化為“對應坐標乘積之間的關系”;再活用正、余弦定理,對三角形的邊、角進行互化. 2.這種問題求解的關鍵是利用向量的知識將條件“脫去向量外衣”,轉(zhuǎn)化為三角函數(shù)的相關知識進行求解.,1.對于三角函數(shù)的求值,需關注:,(1)尋求角與角關系的特殊性,化非特殊角為特殊角,熟練準確地應用公式; (2)注意切化弦、異角化同角、異名化同名、角的變換等常規(guī)技巧的運用; (3)對于條件求值問題,要認真尋找條件和結論的關系,尋找解題的突破口,對于很難入手的問題,可利用分析法.,2.三角形中判斷邊、角關系的具體方法:,(1)通過正弦定理實施邊角轉(zhuǎn)換;(2)通過余弦定理實施邊角轉(zhuǎn)換;(3)通過三角變換找出角之間的關系;(4)通過三角函數(shù)值符號的判斷以及正、余弦函數(shù)的有界性進行討論;(5)若涉及兩個(或兩個以上)三角形,這時需作出這些三角形,先解條件多的三角形,再逐步求出其他三角形的邊和角,其中往往用到三角形內(nèi)角和定理,有時需設出未知量,從幾個三角形中列出方程(組)求解.,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!