《等差等比數(shù)列知識點梳理及經(jīng)典例題.doc》由會員分享,可在線閱讀,更多相關(guān)《等差等比數(shù)列知識點梳理及經(jīng)典例題.doc(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 數(shù)列知識點梳理及經(jīng)典習(xí)題 出題人:李老師A、等差數(shù)列知識點及經(jīng)典例題一、數(shù)列由與的關(guān)系求由求時,要分n=1和n2兩種情況討論,然后驗證兩種情況可否用統(tǒng)一的解析式表示,若不能,則用分段函數(shù)的形式表示為。例根據(jù)下列條件,確定數(shù)列的通項公式。分析:(1)可用構(gòu)造等比數(shù)列法求解;(2)可轉(zhuǎn)化后利用累乘法求解;(3)將無理問題有理化,而后利用與的關(guān)系求解。解答:(1)(2)累乘可得,故(3)二、等差數(shù)列及其前n項和(一)等差數(shù)列的判定1、等差數(shù)列的判定通常有兩種方法:第一種是利用定義,第二種是利用等差中項,即。2、解選擇題、填空題時,亦可用通項或前n項和直接判斷。(1)通項法:若數(shù)列的通項公式為n的一
2、次函數(shù),即=An+B,則是等差數(shù)列;(2)前n項和法:若數(shù)列的前n項和是的形式(A,B是常數(shù)),則是等差數(shù)列。注:若判斷一個數(shù)列不是等差數(shù)列,則只需說明任意連續(xù)三項不是等差數(shù)列即可。例已知數(shù)列的前n項和為,且滿足(1)求證:是等差數(shù)列;(2)求的表達式。分析:(1)與的關(guān)系結(jié)論;(2)由的關(guān)系式的關(guān)系式解答:(1)等式兩邊同除以得-+2=0,即-=2(n2).是以=2為首項,以2為公差的等差數(shù)列。(2)由(1)知=+(n-1)d=2+(n-1)2=2n,=,當(dāng)n2時,=2=。又,不適合上式,故。【例】已知數(shù)列an的各項均為正數(shù),a11.其前n項和Sn滿足2Sn2paanp(pR),則an的通項
3、公式為_a11,2a12paa1p,即22p1p,得p1.于是2Sn2aan1.當(dāng)n2時,有2Sn12aan11,兩式相減,得2an2a2aanan1,整理,得2(anan1)(anan1)0.又an0,anan1,于是an是等差數(shù)列,故an1(n1).(二)等差數(shù)列的基本運算1、等差數(shù)列的通項公式=+(n-1)d及前n項和公式,共涉及五個量,d,n, ,“知三求二”,體現(xiàn)了用方程的思想解決問題;2、數(shù)列的通項公式和前n項和公式在解題中起到變量代換作用,而和d是等差數(shù)列的兩個基本量,用它們表示已知和未知是常用方法。注:因為,故數(shù)列是等差數(shù)列。例已知數(shù)列的首項=3,通項,且,成等差數(shù)列。求:(1
4、)的值;(2)數(shù)列的前n項和的公式。分析:(1)由=3與,成等差數(shù)列列出方程組即可求出;(2)通過利用條件分成兩個可求和的數(shù)列分別求和。解答:(1)由=3得又,得由聯(lián)立得。(2)由(1)得,(三)等差數(shù)列的性質(zhì)1、等差數(shù)列的單調(diào)性:等差數(shù)列公差為d,若d0,則數(shù)列遞增;若d0,d0,且滿足,前n項和最大;(2)若a10,且滿足,前n項和最小;(3)除上面方法外,還可將的前n項和的最值問題看作關(guān)于n的二次函數(shù)最值問題,利用二次函數(shù)的圖象或配方法求解,注意。例已知數(shù)列是等差數(shù)列。(1)若(2)若解答:設(shè)首項為,公差為,(1)由,(2)由已知可得解得【例】已知數(shù)列an的各項均為正數(shù),Sn為其前n項和
5、,對于任意的nN*,滿足關(guān)系式2Sn3an3.(1)求數(shù)列an的通項公式;(2)設(shè)數(shù)列bn的通項公式是bn,前n項和為Tn,求證:對于任意的正整數(shù)n,總有Tn1.(1)解當(dāng)n1時,由2Sn3an3得,2a13a13,a13.當(dāng)n2時,由2Sn3an3得,2Sn13an13.兩式相減得:2(SnSn1)3an3an1,即2an3an3an1,an3an1,又a130,an是等比數(shù)列,an3n.驗證:當(dāng)n1時,a13也適合an3n.an的通項公式為an3n.(2)證明bn,Tnb1b2bn(1)()()1Sn,得,最小正整數(shù)n=15【其他考點題】1、設(shè)an(nN*)是等差數(shù)列,Sn是其前n項的和,
6、且,則下列結(jié)論錯誤的是(C)A.d0B.a70C.S9S5D.S6與S7均為Sn的最大值解析:由S5S6得a1+a2+a3+a50,又S6=S7,a1+a2+a6=a1+a2+a6+a7,a7=0,由S7S8,得a8S5,即a6+a7+a8+a902(a7+a8)0,由題設(shè)a7=0,a80,顯然C選項是錯誤的。2、(C)(A) 2 (B) 4 (C) (D)03、已知a、b、c成等比數(shù)列,a、x、b和b、y、c都成等差數(shù)列,且xy0,那么的值為(B )。 (A)1 (B)2 (C)3 (D)44、已知等差數(shù)列的前項和為()求q的值;()若a1與a5的等差中項為18,bn滿足,求數(shù)列的bn前n項和。()解法一:當(dāng)時,,當(dāng)時,.是等差數(shù)列, , 4分解法二:當(dāng)時,當(dāng)時,.當(dāng)時,.又,所以,得.4分()解:,.又, , 8分又得.,即是等比數(shù)列。所以數(shù)列的前項和.13