《柯西準則及其應用畢業(yè)論文.doc》由會員分享,可在線閱讀,更多相關《柯西準則及其應用畢業(yè)論文.doc(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、柯西準則及其應用摘要:柯西準則是實數(shù)完備性六大定理之一,它是極限論的基礎它的應用貫穿于數(shù)學分析課程學習始終一般地,數(shù)學分析課程教材在討論柯西準則時都只就一種情形來討論,本文將補給并詳細證明其它五種情形函數(shù)極限的柯西準則,同時探討總結(jié)柯西準則在極限、級數(shù)、積分等方面的靈活應用關鍵詞:柯西準則;應用;極限存在;優(yōu)越性朗讀顯示對應的拉丁字符的拼音字典 引言:柯西準則是實數(shù)完備性六大定理之一,它是極限論的基礎它的應用非常廣泛,貫穿于數(shù)學分析課程學習始終一般地,數(shù)學分析課程教材在討論柯西準則時都只就一種情形來討論,即設函數(shù)在內(nèi)有定義,存在的充要條件是:任給,存在正數(shù)(),使得對任何,都有事實上,當,五種
2、情形函數(shù)極限存在的柯西準則可以類比,它們的應用也非常廣泛本文將詳細敘述并證明其它五種情形函數(shù)極限的柯西準則,同時探討總結(jié)柯西準則在極限、級數(shù)、積分等方面的靈活應用,充分展示其在解決上述幾個方面問題的優(yōu)越性和博大精深之處1 柯西準則的其它五種形式定理1.1 設函數(shù)在內(nèi)有定義存在的充要條件是:任給,存在正數(shù),使得對任何,均有,存在正數(shù)(,存在正數(shù)(存在使得當時有從而有于是,按數(shù)列極限的柯西收斂準則,數(shù)列的極限存在,記為,即設另一數(shù)列且,則如上所證,存在,記為現(xiàn)證,為此,考慮數(shù)列易見且,故仍如上面所證,也收斂于是,作為的兩個子列,與必有相同的極限,所以由歸結(jié)原則推得證畢定理1.2 設函數(shù)在內(nèi)有定義存
3、在的充要條件是:任給,存在正數(shù),使得對任何,均有,設函數(shù)在內(nèi)有定義存在的充要條件是:任給,存在正數(shù),使得對任何,均有證 先證必要性設,按照定義,于是再證充分性設,設函數(shù)在內(nèi)有定義存在的充要條件是:任給,存在正數(shù),使得對任何,均有,設函數(shù)在內(nèi)有定義存在的充要條件是:任給,存在正數(shù),使得對任何,均有定理1.5的證明可以類似前面4個定理的證明2 歸納柯西準則在數(shù)學分析中的應用2.1柯西準則在實數(shù)完備性理論中的應用實數(shù)完備性是數(shù)學分析的基礎,其六大定理即確界原理、單調(diào)有界定理、區(qū)間套定理、有限覆蓋定理、聚點定理、柯西準則,建立了實數(shù)完備性理論的骨架作為六大定理之一的柯西準則,起著至關重要的作用,由該準
4、則入手,可依次推出其它五個定理2.1.1用數(shù)列的柯西收斂準則證明確界原理證 設為非空有上界數(shù)集由實數(shù)的阿基米德性,對任何正數(shù),存在整數(shù),使得為的上界,而不是的上界,即存在,使得分別取則對每一個正整數(shù),存在相應的,使得為的上界,而不是的上界,故存在,使得 (1)又對正整數(shù),是的上界,故有結(jié)合(1)式得;同理有從而得 于是,對任給的,存在,使得當時有由柯西收斂準則,數(shù)列收斂記 (2)現(xiàn)在證明就是的上確界首先,對任何和正整數(shù)有,由(2)式得,即是的一個上界其次,對任何,由及(2)式,對充分大的同時有又因不是的上界,故存在,使得結(jié)合上式得這說明為的上確界 同理可證:若為非空有下界數(shù)集,則必存在下確界2
5、.1.2 用平面點列收斂的柯西準則證明閉區(qū)間套定理證 在閉域套的每一個閉域內(nèi)任取一點,構(gòu)成一個各點各不相同的平面點列,則對一切自然數(shù),由于,以,因此由定義任給,存在正整數(shù),使得當時,對一切自然數(shù),都有,根據(jù)柯西準則收斂,記現(xiàn)證為此任意取定則因為對一切自然數(shù)都有,由定義知是的聚點,而閉域必為閉集,所以它的聚點最后證明的唯一性,若還有則由于,所以2.2 柯西準則是極限論的基礎,許多斂散性判別法都由它導出2.2.1 柯西準則在數(shù)列收斂性判定中的應用數(shù)列收斂有數(shù)列發(fā)散使得例1 應用柯西收斂準則,證明數(shù)列收斂證 對取,則對,有 而由知,故由柯西收斂準則知數(shù)列收斂2.2.2 柯西準則在函數(shù)極限存在性判定中
6、的應用不存在的充要條件是:,對,都存在,使得例2 證明極限不存在證 可取,對任何,設正整數(shù),令則有,而于是按照柯西準則,極限不存在2.2.3 柯西準則在無窮積分與瑕積分收斂性判定中的應用因為無窮積分的斂散性是由變上限函數(shù)存在與否確定的因此,可由函數(shù)極限存在的柯西準則導出無窮積分收斂的柯西準則:無窮積分收斂有同理,由函數(shù)極限存在的柯西準則可直接推出瑕積分(a為瑕點)收斂的柯西準則:瑕積分(a為瑕點)收斂有例3 設在上連續(xù)可微,并且如果(當時),其中為一常數(shù)試證:證 (反證)假設,則使對,總有因為在上連續(xù)可微,故在上一致連續(xù),于是,使當時,又因收斂,故時,當時,對該,存在,故,當時 矛盾2.2.4
7、 柯西準則在級數(shù)收斂性判定中的應用因為級數(shù)的斂散性是由其前項和數(shù)列的斂散性確定的所以,由收斂的柯西準則直接可得級數(shù)收斂的柯西準則:收斂有例4 級數(shù)收斂的充要條件是:對任意的正整數(shù)序列都有證 必要性 因為收斂,所以對當及有特別地所以充分性 用反證法若發(fā)散,則及自然數(shù),使特別及自然數(shù)使,及自然數(shù),使 這與矛盾所以級數(shù)是收斂的例5應用級數(shù)收斂的柯西準則證明級數(shù)收斂證 由于因此,對任給,取,使當及對任意正整數(shù),由上式就有依級數(shù)收斂的柯西準則推得級數(shù)是收斂的2.2.5 柯西準則在函數(shù)列與函數(shù)項級數(shù)一致收斂性判定中的應用由數(shù)列收斂的柯西準則易推得函數(shù)列一致收斂的柯西準則:函數(shù)列在上一致收斂有又因為函數(shù)項級
8、數(shù)的一致收斂性是由其部分和函數(shù)列的一致收斂性確定的所以,可用函數(shù)列一致收斂的柯西準則直接推出函數(shù)項級數(shù)一致收斂的柯西準則:在上一致收斂 當時,有 進一步易推出判斷函數(shù)項級數(shù)一致收斂常用的魏爾斯特拉斯判別法例6 證明:若對,有且收斂,則函數(shù)列在區(qū)間上一致收斂證 , 因為收斂,故有有所以函數(shù)列在區(qū)間上一致收斂例7 設是上的單調(diào)函數(shù),證明:若與都絕對收斂,則在上絕對且一致收斂證 因為與絕對收斂對當時,對有又因為是上的單調(diào)函數(shù),所以對有 或 由一致收斂的柯西準則可推出函數(shù)項級數(shù)在上絕對且一致收斂柯西準則的優(yōu)越性柯西準則的優(yōu)越性是顯然的,在數(shù)學分析中,凡涉及到“收斂”與“一致收斂”概念都有內(nèi)容相應的柯西
9、收斂(或一致收斂)準則,其最大的優(yōu)點是不需借助于數(shù)列(或函數(shù))以外的任何信息,只依據(jù)各項的具體特點來解決相應的問題,使得看似復雜的問題變的簡單易懂它具有整齊完美的形式,充分體現(xiàn)了數(shù)學美,使得許多抽象的數(shù)學理論形象可見在數(shù)學分析中有非常重要的理論價值,所以深刻理解柯西準則很重要參考文獻1 責任編輯高尚華,華東師范大學數(shù)學系,數(shù)學分析,高等教育出版社,2001年,第三版2 崔萬臣,談柯西準則在數(shù)學分析中的作用,唐山師專學報,1993年,第21卷,第2期3 王安斌、賓紅華,用柯西準則證明幾個相關命題,數(shù)學理論與應用,2004年,第24卷,第4期4 陳祥平,對柯西準則教學的體會,濟寧師專學報,1998
10、年,第19卷,第6期5 薛懷玉,上完備性定理的等價,咸陽師范專科學校學報(自然學版),1998年,第13卷,第6期6 錢吉林,數(shù)學分析題解精粹,湘北長江出版集團,2009年,第二版7 劉玉鏈、傅沛仁,數(shù)學分析講義,高等教育出版社,2003年,第三版8 陳紀修、於崇華、金路,數(shù)學分析,高等教育出版社,2004年,第二版Cauchy criterion and its applicationAbstract: The Cauchy criterion is one of the six theorems which is about the completeness of real numbers
11、. it is the foundation of the limit. Throughout the course of mathematical analysis, its application has always been. In general, During the curriculum materials of the mathematical analysis, when it discusses the Cauchy criterion, only a situation thatis discussed. This article will supply proofs of the other five cases of the Cauchy criterion of the limits of function. At the same time, it will discuss and sum the flexibility application of Cauchy criterion in the limits, the series , Points and so on. Keywords: Cauchy criterion; applications; limit exists; superiority第12頁