九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

遼寧省沈陽市2022-2023學(xué)年高中數(shù)學(xué)暑假作業(yè) 第二部分 不等式(2)

上傳人:xt****7 文檔編號:106924045 上傳時間:2022-06-14 格式:DOC 頁數(shù):6 大?。?06.50KB
收藏 版權(quán)申訴 舉報 下載
遼寧省沈陽市2022-2023學(xué)年高中數(shù)學(xué)暑假作業(yè) 第二部分 不等式(2)_第1頁
第1頁 / 共6頁
遼寧省沈陽市2022-2023學(xué)年高中數(shù)學(xué)暑假作業(yè) 第二部分 不等式(2)_第2頁
第2頁 / 共6頁
遼寧省沈陽市2022-2023學(xué)年高中數(shù)學(xué)暑假作業(yè) 第二部分 不等式(2)_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《遼寧省沈陽市2022-2023學(xué)年高中數(shù)學(xué)暑假作業(yè) 第二部分 不等式(2)》由會員分享,可在線閱讀,更多相關(guān)《遼寧省沈陽市2022-2023學(xué)年高中數(shù)學(xué)暑假作業(yè) 第二部分 不等式(2)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、遼寧省沈陽市2022-2023學(xué)年高中數(shù)學(xué)暑假作業(yè) 第二部分 不等式(2) 在約束條件下,求目標(biāo)函數(shù)的最值問題,通常會轉(zhuǎn)化為求直線在軸上截距、平面上兩點(diǎn)距離、直線斜率、區(qū)域面積等幾何量的取值范圍問題,此類問題突出體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。 1.已知變量滿足約束條件,則的最大值為( ) 3. 若滿足約束條件,則的最小值為 。 5.某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50計,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價如下表 年產(chǎn)量/畝 年種植成本/

2、畝 每噸售價 黃瓜 4噸 1.2萬元 0.55萬元 韭菜 6噸 0.9萬元 0.3萬元 為使一年的種植總利潤(總利潤=總銷售收入 總種植成本)最大,那么黃瓜和韭菜的種植面積(單位:畝)分別為( ) A.50,0 B.30,20 C.20,30 D.0,50 10. 設(shè)不等式組所表示的平面區(qū)域是,平面區(qū)域是與關(guān)于直線對稱,對于中的任意一點(diǎn)A與中的任意一點(diǎn)B, 的最小值等于( ) A. B.4 C. D.2 11.設(shè)不等式組,表示平面區(qū)域為D,在區(qū)域D內(nèi)隨機(jī)

3、取一個點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是 A B C D 12. 若實數(shù)x、y滿足則的取值范圍是 ( ) A.(0,1) B. C.(1,+) D. 14.設(shè)平面點(diǎn)集,則所表示的平面圖形的面積為 A B C D 15.在平面直角坐標(biāo)系,已知平面區(qū)域且,則平面區(qū)域的面積為 ( ) A. B. C. D. 16. 若為不等式組表示的平面區(qū)域,則當(dāng)從-2連續(xù)變化到1

4、時,動直線掃過中的那部分區(qū)域的面積為 . 17. 若不等式組所表示的平面區(qū)域被直線分為面積相等的兩部分,則的值是 (A) (B) (C) (D) 高 18.若,且當(dāng)時,恒有,則以,b為坐標(biāo)點(diǎn)所形成的平面區(qū)域的面積等于__________. 19.在平面直角坐標(biāo)系中,若不等式組(為常數(shù))所表示的平面區(qū)域內(nèi)的面積等于2,則的值為 A. -5 B. 1 C. 2 D. 3

5、 不等式2 1、選 【解析】約束條件對應(yīng)內(nèi)的區(qū)域(含邊界),其中 畫出可行域,結(jié)合圖形和z的幾何意義易得 3、答案: 【解析】利用不等式組,作出可行域,可知區(qū)域表示的為三角形,當(dāng)目標(biāo)函數(shù)過點(diǎn)時,目標(biāo)函數(shù)最大,當(dāng)目標(biāo)函數(shù)過點(diǎn)時最小為.] 5、選B;【解析】本題考查線性規(guī)劃知識在實際問題中的應(yīng)用,同時考查了數(shù)學(xué)建模的思想方法以及實踐能力. 設(shè)黃瓜和韭菜的種植面積分別為x、y畝,總利潤為z萬元, 則目標(biāo)函數(shù)為 . 線性約束條件為? 即 作出不等式組表示的可行域, 易求得點(diǎn).

6、 平移直線,可知當(dāng)直線,經(jīng)過點(diǎn), 即時 z取得最大值,且(萬元). 故選B. 點(diǎn)評:解答線性規(guī)劃應(yīng)用題的一般步驟可歸納為: (1)審題——仔細(xì)閱讀,明確有哪些限制條件,目標(biāo)函數(shù)是什么? (2)轉(zhuǎn)化——設(shè)元.寫出約束條件和目標(biāo)函數(shù); (3)求解——關(guān)鍵是明確目標(biāo)函數(shù)所表示的直線與可行域邊界直線斜率間的關(guān)系; (4)作答——就應(yīng)用題提出的問題作出回答. 10、選B ;【命題意圖】本題考查不等式中的線性規(guī)劃以及兩個圖形間最小距離的求解、基本公式(點(diǎn)到直線的距離公式等)的應(yīng)用,考查了轉(zhuǎn)化與化歸能力。 【解析】由題意知,所求的的最小值,即為區(qū)域中的點(diǎn)到直線的距離的最小值的兩倍,畫出已

7、知不等式表示的平面區(qū)域,如圖所示,可看出點(diǎn)(1,1)到直線的距離最小,故的最小值為,所以選B。 評注:在線性約束條件下,求分別在關(guān)于一直線對稱的兩個區(qū)域內(nèi)的兩點(diǎn)距離的最值問題,通常轉(zhuǎn)化為求其中一點(diǎn)(x,y)到對稱軸的距離的的最值問題。結(jié)合圖形易知,可行域的頂點(diǎn)及可行域邊界線上的點(diǎn)是求距離最值的關(guān)鍵點(diǎn). 11、選D;【解析】題目中表示的區(qū)域為正方形,如圖所示,而動點(diǎn)M可 以存在的位置為正方形面積減去四分之一圓的面積部分, 因此 ,故選D. 12、選C;【解析】如圖,陰影部分為不等式所對應(yīng)的平面區(qū)域,表示平面區(qū)域內(nèi)的動點(diǎn)與原點(diǎn)之間連線的斜率,由圖易知,,選C. 評注:在線

8、性約束條件下,對于形如的目標(biāo)函數(shù)的取值問題,通常轉(zhuǎn)化為求點(diǎn)、之間連線斜率的取值. 結(jié)合圖形易知,可行域的頂點(diǎn)是求解斜率取值問題的關(guān)鍵點(diǎn). 在本題中,要合理運(yùn)用極限思想,判定的最小值無限趨近于1. 14、選;【解析】由對稱性:圍成的面積與圍成的面積相等,得:所表示的平面圖形的面積為圍成的面積既 15、選B;【解析】令,則,代入集合A,易得,其所對應(yīng)的平面區(qū)域如圖陰影部分,則平面區(qū)域的面積為×2×1=1,∴選B. 評注:本題涉及雙重約束條件,解題的關(guān)鍵是采用換元的思想去尋求平面區(qū)域所對應(yīng)的約束條件,從而準(zhǔn)確畫出相應(yīng)的平面區(qū)域. 16、答案;【解析】如圖,陰影部分為不等式組表示的

9、平面區(qū)域, 其中: . 當(dāng)從-2連續(xù)變化到1時,動直線掃過的平面區(qū)域即為與之間的平面區(qū)域,則動直線掃過中的那部分平面區(qū)域的面積即為四邊形的面積,由圖易知,其面積為:. 評注:本題所求平面區(qū)域即為題設(shè)平面區(qū)域A與動直線在從-2連續(xù)變化到1時掃過的平面區(qū)域之間的公共區(qū)域,理解題意,準(zhǔn)確畫圖是解題的關(guān)鍵. A x D y C O y=kx+ 17、選A; 【解析】不等式表示的平面區(qū)域如圖所示陰影部分△ABC由得A(1,1),又B(0,4),C(0,) ∴△ABC=,設(shè)與的交點(diǎn)為D, 則由知,∴, ∴,選A. 18、答案1;【解析】如圖,陰影部分為不等式組表示的平面區(qū)

10、域, 要使得恒有成立,只須平面區(qū)域頂點(diǎn)的坐標(biāo)都滿足不等式,易得所以所形成的平面區(qū)域的面積等于1. 評注:本題是線性規(guī)劃背景下的不等式恒成立問題,只須考慮可行域的頂點(diǎn)即可. 作為該試卷客觀題的最后一題,熟悉的題面有效避免了學(xué)生恐懼心理的產(chǎn)生,但這并不等于降低了對數(shù)學(xué)能力、數(shù)學(xué)思想方法的考查,真可謂簡約而不簡單. 19、選D;【解析】 作出不等式組所圍成的平面區(qū)域. 如圖所示,由題意可知,公共區(qū)域的面積為2;∴|AC|=4,點(diǎn)C的坐標(biāo)為(1,4)代入得a=3,故選D. 點(diǎn)評:該題在作可行域時,若能抓住直線方程中含有參數(shù)a這個特征,迅速與“直線系”產(chǎn)生聯(lián)系,就會明確可變形為的形式,則此直線必過定點(diǎn)(0,1);此時可行域的“大致”情況就可以限定,再借助于題中的其它條件,就可輕松獲解.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!