2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 課時(shí)跟蹤訓(xùn)練44 直線、平面垂直的判定與性質(zhì) 文
《2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 課時(shí)跟蹤訓(xùn)練44 直線、平面垂直的判定與性質(zhì) 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 課時(shí)跟蹤訓(xùn)練44 直線、平面垂直的判定與性質(zhì) 文(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 課時(shí)跟蹤訓(xùn)練44 直線、平面垂直的判定與性質(zhì) 文 一、選擇題 1.(2017·湖北七市高三聯(lián)考)設(shè)直線m與平面α相交但不垂直,則下列說(shuō)法中正確的是( ) A.在平面α內(nèi)有且只有一條直線與直線m垂直 B.過(guò)直線m有且只有一個(gè)平面與平面α垂直 C.與直線m垂直的直線不可能與平面α平行 D.與直線m平行的平面不可能與平面α垂直 [解析] 對(duì)于A,在平面α內(nèi)可能有無(wú)數(shù)條直線與直線m垂直,這些直線是互相平行的,A錯(cuò)誤;對(duì)于B,只要m?α,過(guò)直線m必有并且也只有一個(gè)平面與平面α垂直,B正確;對(duì)于C,類(lèi)似于A,在平面α外可能有無(wú)數(shù)條直線垂直于直線
2、m并且平行于平面α,C錯(cuò)誤;對(duì)于D,與直線m平行且與平面α垂直的平面有無(wú)數(shù)個(gè),D錯(cuò)誤.故選B. [答案] B 2.(2016·浙江卷)已知互相垂直的平面α,β交于直線l,若直線m,n滿(mǎn)足m∥α,n⊥β,則( ) A.m∥l B.m∥n C.n⊥l D.m⊥n [解析] 對(duì)于選項(xiàng)A,∵α∩β=l,∴l(xiāng)?α,∵m∥α,∴m與l可能平行,也可能異面,故選項(xiàng)A不正確;對(duì)于選項(xiàng)B,D,∵α⊥β,m∥α,n⊥β,∴m與n可能平行,可能相交,也可能異面,故選項(xiàng)B,D不正確.對(duì)于選項(xiàng)C,∵α∩β=l,∴l(xiāng)?β.∵n⊥β,∴n⊥l.故選C. [答案] C 3.(2018·湖南長(zhǎng)沙模擬)已知α
3、,β,γ為平面,l是直線,若α∩β=l,則“α⊥γ,β⊥γ”是“l(fā)⊥γ”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
[解析] 由α⊥γ,β⊥γ,α∩β=l可以推出l⊥γ;反過(guò)來(lái),若l⊥γ,α∩β=l,則根據(jù)面面垂直的判定定理,可知α⊥γ,β⊥γ.所以若α∩β=l,則“α⊥γ,β⊥γ”是“l(fā)⊥γ”的充要條件.
[答案] C
4.如圖,已知△ABC為直角三角形,其中∠ACB=90°,M為AB的中點(diǎn),PM垂直于△ABC所在平面,那么( )
A.PA=PB>PC
B.PA=PB 4、
[解析] ∵M(jìn)為AB的中點(diǎn),△ACB為直角三角形,
∴BM=AM=CM,又PM⊥平面ABC,
∴Rt△PMB≌Rt△PMA≌Rt△PMC,
故PA=PB=PC.
[答案] C
5.(2017·貴陽(yáng)監(jiān)測(cè))如圖,在三棱錐P-ABC中,不能證明AP⊥BC的條件是( )
A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PC
D.AP⊥平面PBC
[解析] A中,因?yàn)锳P⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC?平面PBC,所以AP⊥BC,故A正確;C中,因?yàn)槠矫鍮PC⊥平面APC,BC⊥PC,所以BC⊥平面 5、APC,又AP?平面APC,所以AP⊥BC,故C正確;D中,由A知D正確;B中條件不能判斷出AP⊥BC,故選B.
[答案] B
6.(2017·湖北孝感高中期中)如圖所示,在直三棱柱ABC-A1B1C1中,BC=AC,AC1⊥A1B,M,N分別是A1B1,AB的中點(diǎn),給出下列結(jié)論:
①C1M⊥平面A1ABB1;②A1B⊥NB1;③平面AMC1⊥平面CBA1.
其中正確結(jié)論的個(gè)數(shù)為( )
A.0 B.1
C.2 D.3
[解析]?、僭谥比庵鵄BC-A1B1C1中,平面A1B1C1⊥平面ABB1A1.因?yàn)锽C=AC,所以B1C1=A1C1.因?yàn)镸為A1B1的中點(diǎn),所以 6、C1M⊥A1B1.因?yàn)槠矫鍭1B1C1∩平面ABB1A1=A1B1,所以C1M⊥平面ABB1A1.故①正確.②由①知,C1M⊥A1B,又因?yàn)锳C1⊥A1B,C1M∩AC1=C1,所以A1B⊥平面AMC1,所以A1B⊥AM.因?yàn)镸,N分別是A1B1,AB的中點(diǎn),所以ANB1M是平行四邊形,所以AM∥NB1.因?yàn)锳1B⊥AM,所以A1B⊥NB1.故②正確.③由②知A1B⊥平面AMC1,因?yàn)锳1B?平面CBA1,所以平面AMC1⊥平面CBA1.故③正確.綜上所述,正確結(jié)論的個(gè)數(shù)為3.故選D.
[答案] D
二、填空題
7.(2017·河北石家莊調(diào)研)如圖,已知PA⊥平面ABC,BC⊥AC,則圖 7、中直角三角形的個(gè)數(shù)為_(kāi)_______.
[解析] ∵PA⊥平面ABC,AB,AC,BC?平面ABC,
∴PA⊥AB,PA⊥AC,PA⊥BC,則△PAB,△PAC為直角三角形.
由BC⊥AC,且AC∩PA=A,∴BC⊥平面PAC,從而B(niǎo)C⊥PC,因此△ABC,△PBC也是直角三角形.
[答案] 4
8.如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動(dòng)點(diǎn),當(dāng)點(diǎn)M滿(mǎn)足__________時(shí),平面MBD⊥平面PCD.(只要填寫(xiě)一個(gè)你認(rèn)為是正確的條件即可)
[解析] 由定理可知,BD⊥PC.
∴當(dāng)DM⊥PC(或BM⊥PC)時(shí),就有PC⊥平面M 8、BD,
而PC?平面PCD,
∴平面MBD⊥平面PCD.
[答案] DM⊥PC(或BM⊥PC等)
三、解答題
9.(2017·山東青島質(zhì)檢)如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F(xiàn),G分別為AC,DC,AD的中點(diǎn).
(1)求證:EF⊥平面BCG;
(2)求三棱錐D-BCG的體積.
[解] (1)證明:由已知得△ABC≌△DBC,因此AC=DC.
又G為AD的中點(diǎn),所以CG⊥AD.
同理BG⊥AD,又BG∩CG=G,因此AD⊥平面BCG.
又EF∥AD,所以EF⊥平面BCG.
(2)在平面ABC內(nèi),作AO⊥ 9、BC,交CB的延長(zhǎng)線于O,如圖由平面ABC⊥平面BCD,平面ABC∩平面BDC=BC,AO?平面ABC,知AO⊥平面BDC.又G為AD中點(diǎn),因此G到平面BDC的距離h是AO長(zhǎng)度的一半.
在△AOB中,AO=AB·sin60°=,
所以VD-BCG=VG-BCD=S△DBC·h=×BD·BC·sin120°·=.
10.(2017·云南省高中畢業(yè)班統(tǒng)一檢測(cè))如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,底面ABCD是平行四邊形,AB=BC=2a,AC=2a,E是PA的中點(diǎn).
(1)求證:平面BED⊥平面PAC;
(2)求點(diǎn)E到平面PBC的距離.
[解] (1)證明:在 10、平行四邊形ABCD中,AB=BC,
∴四邊形ABCD是菱形,∴BD⊥AC.
∵PC⊥平面ABCD,BD?平面ABCD,∴PC⊥BD.
又PC∩AC=C,∴BD⊥平面PAC,∵BD?平面BED,
∴平面BED⊥平面PAC.
(2)設(shè)AC交BD于點(diǎn)O,連接OE,如圖.
在△PCA中,易知O為AC的中點(diǎn),E為PA的中點(diǎn),
∴EO∥PC.
∵PC?平面PBC,EO?平面PBC,
∴EO∥平面PBC,
∴點(diǎn)O到平面PBC的距離就是點(diǎn)E到平面PBC的距離.
∵PC⊥平面ABCD,PC?平面PBC,
∴平面PBC⊥平面ABCD,交線為BC.
在平面ABCD內(nèi)過(guò)點(diǎn)O作OH⊥BC于 11、點(diǎn)H,則OH⊥平面PBC.
在Rt△BOC中,BC=2a,OC=AC=a,
∴OB=a.S△BOC=OC·OB=BC·OH,
∴OH===a.
∴點(diǎn)E到平面PBC的距離為a.
[能力提升]
11.空間四邊形ABCD中,AB=CD=2,AD=BC=3,M,N分別是對(duì)角線AC與BD的中點(diǎn),則MN與( )
A.AC,BD之一垂直 B.AC,BD不一定垂直
C.AC,BD都不垂直 D.AC,BD都垂直
[解析] 連接BM,DM,AN,CN,在△ABC和△ACD中,AB=CD,AD=BC,AC=CA,故△ABC≌△CDA.又M為AC中點(diǎn),∴BM=DM.∵N為BD的中點(diǎn),∴MN 12、⊥BD.同理可證MN⊥AC,故選D.
[答案] D
12.如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD,則在三棱錐A-BCD中,下列命題正確的是( )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
[解析] ∵在四邊形ABCD中,
AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,
∴BD⊥CD.
又平面ABD⊥平面BCD,
且平面ABD∩平面BCD=BD,
故CD⊥平面ABD, 13、則CD⊥AB.
又AD⊥AB,CD∩AD=D,
故AB⊥平面ADC.
∴平面ABC⊥平面ADC.故選D.
[答案] D
13.(2017·內(nèi)蒙古包頭一模)已知直線a,b,平面α,且滿(mǎn)足a⊥α,b∥α,有下列四個(gè)命題:
①對(duì)任意直線c?α,有c⊥a;②存在直線c?α,使c⊥b且c⊥α;③對(duì)滿(mǎn)足a?β的任意平面β,有β∥α;④存在平面β⊥α,使b⊥β.
其中正確的命題有________.(填序號(hào))
[解析] 因?yàn)閍⊥α,所以a垂直于α內(nèi)任一直線,所以①正確;由b∥α得α內(nèi)存在一直線l與b平行,在α內(nèi)作直線m⊥l,則m⊥b,m⊥a,再將m平移得到直線c,使c?α即可,所以②正確;由面 14、面垂直的判定定理可得③不正確;若b⊥β,則由b∥α得α內(nèi)存在一條直線l與b平行,必有l(wèi)⊥β,即有α⊥β,而b⊥β的平面β有無(wú)數(shù)個(gè),所以④正確.
[答案] ①②④
14.如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E為BC的中點(diǎn),點(diǎn)P在線段D1E上.點(diǎn)P到直線CC1的距離的最小值為_(kāi)_______.
[解析] 點(diǎn)P到直線CC1的距離等于點(diǎn)P在平面ABCD上的射影到點(diǎn)C的距離,設(shè)點(diǎn)P在平面ABCD上的射影為P′,顯然點(diǎn)P到直線CC1的距離的最小值為P′C的長(zhǎng)度的最小值.當(dāng)P′C⊥DE時(shí),P′C的長(zhǎng)度最小,此時(shí)P′C==.
[答案]
15.(2017·北京海淀區(qū)零模)如圖所 15、示,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=,E是側(cè)棱PA上的動(dòng)點(diǎn).
(1)求四棱錐P-ABCD的體積;
(2)如果E是PA的中點(diǎn),求證:PC∥平面BDE;
(3)不論點(diǎn)E在側(cè)棱PA的任何位置,是否都有BD⊥CE?證明你的結(jié)論.
[解] (1)因?yàn)镻A⊥平面ABCD,
所以VP-ABCD=S正方形ABCD·PA=×12×=,
即四棱錐P-ABCD的體積為.
(2)證明:如圖所示,連接AC交BD于點(diǎn)O,連接OE.
因?yàn)樗倪呅蜛BCD是正方形,所以O(shè)是AC的中點(diǎn),
又E是PA的中點(diǎn),所以PC∥OE,
因?yàn)镻C?平面BDE,OE?平面B 16、DE,
所以PC∥平面BDE.
(3)不論點(diǎn)E在側(cè)棱PA的任何位置,都有BD⊥CE.證明如下:
因?yàn)樗倪呅蜛BCD是正方形,所以BD⊥AC,
因?yàn)镻A⊥底面ABCD,且BD?平面ABCD,所以BD⊥PA,
又AC∩PA=A,所以BD⊥平面PAC.
因?yàn)椴徽擖c(diǎn)E在側(cè)棱PA的任何位置,都有CE?平面PAC,
所以不論點(diǎn)E在側(cè)棱PA的任何位置,都有BD⊥CE.
16.(2017·全國(guó)卷Ⅰ )如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱錐P-ABCD的體積 17、為,求該四棱錐的側(cè)面積.
[解] (1)證明:由∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.
由于AB∥CD,故AB⊥PD,又CD∩PD=D,從而AB⊥平面PAD.
又AB?平面PAB,所以平面PAB⊥平面PAD.
(2)如圖所示,在平面PAD內(nèi)作PE⊥AD,垂足為E.
由(1)知,AB⊥平面PAD,故AB⊥PE,又AD∩AB=A,可得PE⊥平面ABCD.
設(shè)AB=x,則由已知可得AD=x,PE=x.
故四棱錐P-ABCD的體積VP-ABCD=AB·AD·PE=x3.
由題設(shè)得x3=,故x=2.
從而AB=DC=PA=PD=2,AD=BC=2,PB=PC=2.
18、
可得四棱錐P-ABCD的側(cè)面積為PA·PD+PA·AB+PD·DC+BC2·sin60°=6+2.
[延伸拓展]
(2018·山東青島質(zhì)檢)如圖所示,在直三棱柱ABC-A1B1C1中,底面ABC是正三角形,點(diǎn)D是BC的中點(diǎn),BC=BB1.
(1)求證:A1C∥平面AB1D;
(2)試在棱CC1上找一點(diǎn)M,使得MB⊥AB1,并說(shuō)明理由.
[解] (1)證明:如圖所示,連接A1B交AB1于點(diǎn)O,連接OD.
∵O,D分別是A1B,BC的中點(diǎn),
∴A1C∥OD.∵A1C?平面AB1D,OD?平面AB1D,∴A1C∥平面AB1D.
(2)M為CC1的中點(diǎn).理由如下:
∵在正三棱柱ABC-A1B1C1中,BC=BB1,
∴四邊形BCC1B1是正方形.
∵M(jìn)為CC1的中點(diǎn),D是BC的中點(diǎn),
∴△B1BD≌△BCM,∴∠BB1D=∠CBM.
又∵∠BB1D+∠BDB1=,
∴∠CBM+∠BDB1=,∴BM⊥B1D.
∵△ABC是正三角形,D是BC的中點(diǎn),∴AD⊥BC.
∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC,AD?平面ABC,∴AD⊥平面BB1C1C.
∵BM?平面BB1C1C,∴AD⊥BM.
∵AD∩B1D=D,∴BM⊥平面AB1D.
∵AB1?平面AB1D,∴MB⊥AB1.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點(diǎn)美食推薦
- XX國(guó)有企業(yè)黨委書(shū)記個(gè)人述責(zé)述廉報(bào)告及2025年重點(diǎn)工作計(jì)劃
- 世界濕地日濕地的含義及價(jià)值
- 20XX年春節(jié)節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)人到場(chǎng)心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫(huà)之美生活之美
- 節(jié)后開(kāi)工第一課輕松掌握各要點(diǎn)節(jié)后常見(jiàn)的八大危險(xiǎn)
- 廈門(mén)城市旅游介紹廈門(mén)景點(diǎn)介紹廈門(mén)美食展示
- 節(jié)后開(kāi)工第一課復(fù)工復(fù)產(chǎn)十注意節(jié)后復(fù)工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓(xùn)
- 深圳城市旅游介紹景點(diǎn)推薦美食探索
- 節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)勿忘安全本心人人講安全個(gè)個(gè)會(huì)應(yīng)急
- 預(yù)防性維修管理
- 常見(jiàn)閥門(mén)類(lèi)型及特點(diǎn)
- 設(shè)備預(yù)防性維修
- 2.乳化液泵工理論考試試題含答案