九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2022年高考數(shù)學二輪復習 專題五 立體幾何 專題對點練16 空間中的平行與幾何體的體積 文

上傳人:xt****7 文檔編號:105779233 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大小:595.50KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學二輪復習 專題五 立體幾何 專題對點練16 空間中的平行與幾何體的體積 文_第1頁
第1頁 / 共7頁
2022年高考數(shù)學二輪復習 專題五 立體幾何 專題對點練16 空間中的平行與幾何體的體積 文_第2頁
第2頁 / 共7頁
2022年高考數(shù)學二輪復習 專題五 立體幾何 專題對點練16 空間中的平行與幾何體的體積 文_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學二輪復習 專題五 立體幾何 專題對點練16 空間中的平行與幾何體的體積 文》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學二輪復習 專題五 立體幾何 專題對點練16 空間中的平行與幾何體的體積 文(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學二輪復習 專題五 立體幾何 專題對點練16 空間中的平行與幾何體的體積 文 1. 如圖,已知斜三棱柱ABC-A1B1C1的所有棱長均為2,∠B1BA=,M,N分別為A1C1與B1C的中點,且側面ABB1A1⊥底面ABC. (1)證明:MN∥平面ABB1A1; (2)求三棱柱B1-ABC的高及體積. 2.(2018全國Ⅲ,文19) 如圖,矩形ABCD所在平面與半圓弧所在平面垂直,M是上異于C,D的點. (1)證明:平面AMD⊥平面BMC; (2)在線段AM上是否存在點P,使得MC∥平面PBD?說明理由.

2、3. (2018廣西名校聯(lián)盟)如圖,在三棱錐P-ABC中,AB⊥PC,CA=CB,M是AB的中點.點N在棱PC上,點D是BN的中點. 求證:(1)MD∥平面PAC; (2)平面ABN⊥平面PMC. 4. 如圖,在四棱錐P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是邊長為2的等邊三角形,E是BC的中點. (1)求證:AE∥平面PCD; (2)求四棱錐P-ABCD的體積. 5. 在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側棱AA1⊥平面ABC,且D,E分別

3、是棱A1B1,AA1的中點,點F在棱AB上,且AF=AB. (1)求證:EF∥平面BDC1; (2)求三棱錐D-BEC1的體積. 6. 如圖,正方形ABCD的邊長等于2,平面ABCD⊥平面ABEF,AF∥BE,BE=2AF=2,EF=. (1)求證:AC∥平面DEF; (2)求三棱錐C-DEF的體積. 7. 如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,點M是棱CC1的中點. (1)在棱AB上是否存在一點N,使MN∥平面AB1C1?若存在,請確定點N的位置.若不存在,請說明理由; (2)當△ABC是等邊

4、三角形,且AC=CC1=2時,求點M到平面AB1C1的距離. 8. 如圖,在三棱柱ABC-A1B1C1中,AB⊥平面BCC1B1,∠BCC1=,AB=BB1=2,BC=1,D為CC1的中點. (1)求證:DB1⊥平面ABD; (2)求點A1到平面ADB1的距離. 專題對點練16答案 1.(1)證明 取AC的中點P,連接PN,PM. ∵在斜三棱柱ABC-A1B1C1中,M,N分別為A1C1與B1C的中點, ∴PN∥AB1,PM∥AA1. ∵PM∩PN=P,AB1∩AA1=A,PM,PN?平面PMN,AB1,AA1?平面AB1A1,

5、 ∴平面PMN∥平面AB1A1. ∵MN?平面PMN, ∴MN∥平面ABB1A1. (2)解 設O為AB的中點,連接B1O,由題意知△B1BA是正三角形,則B1O⊥AB. ∵側面ABB1A1⊥底面ABC,且交線為AB,∴B1O⊥平面ABC, ∴三棱柱B1-ABC的高B1O=AB1=. ∵S△ABC=×2×2×sin 60°=, ∴三棱柱B1-ABC的體積V=S△ABC·B1O==1. 2.解 (1)由題設知,平面CMD⊥平面ABCD,交線為CD.因為BC⊥CD,BC?平面ABCD,所以BC⊥平面CMD,故BC⊥DM. 因為M為上異于C,D的點,且DC為直徑,所以DM⊥C

6、M. 又BC∩CM=C,所以DM⊥平面BMC. 而DM?平面AMD, 故平面AMD⊥平面BMC. (2)當P為AM的中點時,MC∥平面PBD. 證明如下:連接AC交BD于O. 因為ABCD為矩形,所以O為AC中點. 連接OP,因為P為AM中點, 所以MC∥OP. MC?平面PBD,OP?平面PBD, 所以MC∥平面PBD. 3.證明 (1)在△ABN中,M是AB的中點,D是BN的中點, 所以MD∥AN. 又因為AN?平面PAC,MD?平面PAC,所以MD∥平面PAC. (2)在△ABC中,CA=CB,M是AB的中點, 所以AB⊥MC. 又因為AB⊥PC,PC

7、?平面PMC,MC?平面PMC,PC∩MC=C,所以AB⊥平面PMC.又因為AB?平面ABN,所以平面ABN⊥平面PMC. 4.(1)證明 ∵∠ABC=∠BAD=90°, ∴AD∥BC. ∵BC=2AD,E是BC的中點, ∴AD=CE, ∴四邊形ADCE是平行四邊形, ∴AE∥CD. 又AE?平面PCD,CD?平面PCD, ∴AE∥平面PCD. (2)解 連接DE,BD,設AE∩BD=O,連接OP, 則四邊形ABED是正方形, ∴O為BD的中點. ∵△PAB與△PAD都是邊長為2的等邊三角形,∴BD=2,OB=,OA=,PA=PB=2, ∴OP⊥OB,OP=,∴O

8、P2+OA2=PA2,即OP⊥OA. 又OA?平面ABCD,BD?平面ABCD,OA∩OB=O,∴OP⊥平面ABCD. ∴VP-ABCD=S梯形ABCD·OP=×(2+4)×2×=2. 5.(1)證明 取AB的中點O,連接A1O. ∵AF=AB,∴F為AO的中點. 又E為AA1的中點,∴EF∥A1O. ∵A1D=A1B1,BO=AB,AB􀰿A1B1,∴A1D􀰿BO, ∴四邊形A1DBO為平行四邊形, ∴A1O∥BD, ∴EF∥BD.又EF?平面BDC1,BD?平面BDC1,∴EF∥平面BDC1. (2)解 ∵AA1⊥平面A1B1C1,C1

9、D?平面A1B1C1,∴AA1⊥C1D. ∵A1C1=B1C1=A1B1=2,D為A1B1的中點, ∴C1D⊥A1B1,C1D=. 又AA1?平面AA1B1B,A1B1?平面AA1B1B,AA1∩A1B1=A1, ∴C1D⊥平面AA1B1B. ∵AB=AA1=2,D,E分別為A1B1,AA1的中點, ∴S△BDE=22-×1×2-×1×2-×1×1=. ∴S△BDE·C1D=. 6.(1)證明 連接BD,記AC∩BD=O,取DE的中點G,連接OG,FG. ∵點O,G分別是BD和ED的中點, ∴OG􀰿BE. 又AF􀰿BE, ∴OG&

10、#1051711;AF, ∴四邊形AOGF是平行四邊形, ∴AO∥FG,即AC∥FG. 又AC?平面DEF,FG?平面DEF, ∴AC∥平面DEF. (2)解 在四邊形ABEF中,過F作FH∥AB交BE于點H. 由已知條件知,在梯形ABEF中,AB=FH=2,EF=,EH=1, 則FH2=EF2+EH2,即FE⊥EB,從而FE⊥AF. ∵AC∥平面DEF,∴點C與點A到平面DEF的距離相等, ∴VC-DEF=VA-DEF. ∵DA⊥AB,∴DA⊥平面ABEF, 又S△AEF=AF·EF=×1×. ∴三棱錐C-DEF的體積VC-DEF=VA-DEF=VD-AEF=S△

11、AEF·AD=×2=. 7.解 (1)在棱AB上存在中點N,使MN∥平面AB1C1,證明如下: 設BB1的中點為D,連接DM,NM,ND,因為點M,N,D是CC1,AB,BB1的中點, 所以ND∥AB1,DM∥B1C1,所以ND∥平面AB1C1,DM∥平面AB1C1. 又ND∩DM=D,所以平面NDM∥平面AB1C1.因為MN?平面NDM,所以MN∥平面AB1C1. (2)因為MN∥平面AB1C1,所以點M到平面AB1C1的距離與點N到平面AB1C1的距離相等. 又點N為AB的中點,所以點N到平面AB1C1的距離等于點B到平面AB1C1的距離的一半. 因為AA1⊥平面ABC,

12、所以AB1=AC1=2,所以△AB1C1的底邊B1C1上的高為. 設點B到平面AB1C1的距離為h,則由, 得×2××2××h,可得h=,即點M到平面AB1C1的距離為. 8.(1)證明 在四邊形BCC1B1中, ∵BC=CD=DC1=1,∠BCD=, ∴BD=1. ∵B1D=,BB1=2, ∴B1D⊥BD. ∵AB⊥平面BCC1B1, ∴AB⊥DB1, ∴DB1⊥平面ABD. (2)解 對于四面體A1ADB1,A1到直線DB1的距離即為A1到平面BB1C1C的距離,A1到DB1的距離為2.設A1到平面ADB1的距離為h, △ADB1為直角三角形,AD·DB1=, ∴×h=h. ∵×2×2=2,D到平面AA1B1的距離為, ∴×2×. ∵,∴, 解得h=. ∴點A1到平面ADB1的距離為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!