九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十八講 圓的基本性質(zhì)

上傳人:xt****7 文檔編號:105363672 上傳時間:2022-06-11 格式:DOC 頁數(shù):8 大?。?.32MB
收藏 版權(quán)申訴 舉報 下載
九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十八講 圓的基本性質(zhì)_第1頁
第1頁 / 共8頁
九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十八講 圓的基本性質(zhì)_第2頁
第2頁 / 共8頁
九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十八講 圓的基本性質(zhì)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十八講 圓的基本性質(zhì)》由會員分享,可在線閱讀,更多相關(guān)《九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十八講 圓的基本性質(zhì)(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十八講 圓的基本性質(zhì) 到定點(圓心)等于定長(半徑)的點的集合叫圓,圓常被人們看成是最完美的事物,圓的圖形在人類進程中打下深深的烙?。? 圓的基本性質(zhì)有:一是與圓相關(guān)的基本概念與關(guān)系,如弦、弧、弦心距、圓心角、圓周角等;二是圓的對稱性,圓既是一個軸對稱圖形,又是一中心對稱圖形.用圓的基本性質(zhì)解題應(yīng)注意: 1.熟練運用垂徑定理及推論進行計算和證明; 2.了解弧的特性及中介作用; 3.善于促成同圓或等圓中不同名稱等量關(guān)系的轉(zhuǎn)化. 熟悉如下基本圖形、基本結(jié)論: 【例題求解】 【例1】在半徑為1的⊙O中

2、,弦AB、AC的長分別為和,則∠BAC度數(shù)為 . 作出輔助線,解直角三角形,注意AB與AC有不同的位置關(guān)系. 注: 由圓的對稱性可引出許多重要定理,垂徑定理是其中比較重要的一個,它溝通了線段、角與圓弧的關(guān)系,應(yīng)用的一般方法是構(gòu)造直角三角形,常與勾股定理和解直角三角形知識結(jié) 合起來. 圓是一個對稱圖形,注意圓的對稱性,可提高解與圓相關(guān)問題周密性. 【例2】 如圖,用3個邊長為1的正方形組成一個對稱圖形,則能將其完全覆蓋的圓的最小半徑為(

3、 ) A. B. C. D. 思路點撥 所作最小圓圓心應(yīng)在對稱軸上,且最小圓應(yīng)盡可能通過圓形的某些頂點,通過設(shè)未知數(shù)求解. ⌒ ⌒ 【例3】 如圖,已知點A、B、C、D順次在⊙O上,AB=BD,BM⊥AC于M,求證:AM=DC+CM. 思路點撥 用截長(截AM)或補短(延長DC)證

4、明,將問題轉(zhuǎn)化為線段相等的證明,證題的關(guān)鍵是促使不同量的相互轉(zhuǎn)換并突破它. ⌒ 【例4】 如圖甲,⊙O的直徑為AB,過半徑OA的中點G作弦C E⊥AB,在CB上取一點D,分別作直線CD、ED,交直線AB于點F,M. (1)求∠COA和∠FDM的度數(shù); ⌒ (2)求證:△FDM∽△; (3)如圖乙,若將垂足G改取為半徑OB上任意一點,點D改取在EB上,仍作直線CD、ED,分別交直線AB于點F、M,試判斷:此時是否有△FDM∽△? 證明你的結(jié)論.

5、 思路點撥 (1)在Rt△COG中,利用OG=OA=OC;(2)證明∠=∠FDM,∠CMO= ∠FMD;(3)利用圖甲的啟示思考. 注:善于促成同圓或等圓中不同名稱的相互轉(zhuǎn)化是解決圓的問題的重要技巧,此處,要努力把圓與直線形相合起來,認識到圓可為解與直線形問題提供新的解題思路,而在解與圓相關(guān)問題時常用到直線形的知識與方法(主要是指全等與相似). 【例5】 已知:在△ABC中,AD為∠BAC的平分線,以C為圓心,CD為半徑的半圓交BC的延長線于點E,交AD于點F,交AE于點M,且∠B=∠CAE,EF:FD=4:3. (1)求證:AF=DF

6、; (2)求∠AED的余弦值; (3)如果BD=10,求△ABC的面積. 思路點撥 (1)證明∠ADE=∠DAE;(2)作AN⊥BE于N,cos∠AED=,設(shè)FE=4x,F(xiàn)D=3x,利用有關(guān)知識把相關(guān)線段用x的代數(shù)式表示;(3)尋找相似三角形,運用比例線段求出x的值. 注:本例的解答,需運用相似三角形、等腰三角形的判定、面積方法、代數(shù)化等知識方法思想,綜合運用直線形相關(guān)知識方法思想是解與圓相關(guān)問題的關(guān)鍵. 學(xué)歷訓(xùn)練 1.D是半徑為5cm的⊙O內(nèi)一點,且OD=3cm,則過點D的所有弦中,最小弦AB=

7、 . 2.閱讀下面材料: 對于平面圖形A,如果存在一個圓,使圖形A上的任意一點到圓心的距離都不大于這個圓的半徑,則稱圖形A被這個圓所覆蓋. 對于平面圖形A,如果存在兩個或兩個以上的圓,使圖形A上的任意一點到其中某個圓的圓心的距離都不大于這個圓的半徑,則稱圖形A被這些圓所覆蓋. 例如:圖甲中的三角形被一個圓所覆蓋,圖乙中的四邊形被兩個圓所覆蓋. 回答下列問題: (1)邊長為lcm的正方形被一個半徑為r的圓所覆蓋,r的最小值是 cm; (2)邊長為lcm的等邊三角形被一個半徑為r的圓所覆蓋,r的最小值是 cm;

8、 (3)長為2cm,寬為lcm的矩形被兩個半徑都為r的圓所覆蓋,r的最小值是 cm. 3.世界上因為有了圓的圖案,萬物才顯得富有生機,以下來自現(xiàn)實生活的圖形中都有圓:它們看上去多么美麗與和諧,這正是因為圓具有軸對稱和中心對稱性. (1)請問以下三個圖形中是軸對稱圖形的有 ,是中心對稱圖形的有 (分別用下面三個圖的代號a,b,c填空). (2)請你在下面的兩個圓中,按要求分別畫出與上面圖案不重復(fù)的圖案

9、(草圖) (用尺規(guī)畫或徒手畫均可,但要盡可能準確些,美觀些). a.是軸對稱圖形但不是中心對稱圖形. b.既是軸對稱圖形又是中心對稱圖形. 4.如圖,AB是⊙O的直徑,CD是弦,若AB=10cm,CD=8cm,那么A、B兩點到直線CD的距離之和為( ) A.12cm B.10cm C. 8cm D.6cm 5.一種花邊是由如圖的弓形組成的,ACB的半徑為5,弦AB=8,則弓形的高CD

10、為( ) A.2 B. C.3 D. ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ 6.如圖,在三個等圓上各自有一條劣弧AB、CD、EF,如果AB+CD=EF,那么AB+CD與E的大小關(guān)系是( ) A.AB+CD=EF B.AB+CD=F C. AB+CD

11、成,未切割前的單晶硅材料是一種薄形圓片,叫“晶圓片”.現(xiàn)為了生產(chǎn)某種CPU芯片,需要長、寬都是1cm的正方形小硅片若干.如果晶圓片的直徑為10.05cm,問:一張這種晶圓片能否切割出所需尺寸的小硅片66張?請說明你的方法和理由(不計切割損耗). ⌒ 8.如圖,已知⊙O的兩條半徑OA與OB互相垂直,C為AmB上的一點,且AB2+OB2=BC2,求∠OAC的度數(shù). 9.不過圓心的直線交⊙O于C、D兩點,AB是⊙O的直徑,AE⊥,垂足為E,BF⊥

12、,垂足為F. (1)在下面三個圓中分別補畫出滿足上述條件的具有不同位置關(guān)系的圖形; (2)請你觀察(1)中所畫圖形,寫出一個各圖都具有的兩條線段相等的結(jié)論(不再標注其他字母,找結(jié)論的過程中所連輔助線不能出現(xiàn)在結(jié)論中,不寫推理過程); (3)請你選擇(1)中的一個圖形,證明(2)所得出的結(jié)論. 10.以AB為直徑作一個半圓,圓心為O,C是半圓上一點,且OC2=AC×BC, ⌒ 則∠CAB= . 11.如圖,把正三角形ABC的外接圓對折,使點A落在BC的中點A′上,若BC=5,則折痕在△ABC內(nèi)的部分DE長為 . 12.

13、如圖,已知AB為⊙O的弦,直徑MN與AB相交于⊙O內(nèi),MC⊥AB于C,ND⊥AB于D,若MN=20,AB=,則MC—ND= . ⌒ 13.如圖,已知⊙O的半徑為R,C、D是直徑AB同側(cè)圓周上的兩點,AC的度數(shù)為96°,BD的度數(shù)為36°,動點P在AB上,則CP+PD的最小值為 . 14.如圖1,在平面上,給定了半徑為r的圓O,對于任意點P,在射線OP上取一點P′,使得OP×OP′=r2,這種把點

14、P變?yōu)辄cP′的變換叫作反演變換,點P與點P′叫做互為反演點. (1)如圖2,⊙O內(nèi)外各有一點A和B,它們的反演點分別為A′和B′,求證:∠A′=∠B; (2)如果一個圖形上各點經(jīng)過反演變換得到的反演點組成另一個圖形,那么這兩個圖形叫做互為反演圖形. ①選擇:如果不經(jīng)過點O的直線與⊙O相交,那么它關(guān)于⊙O的反演圖形是( ) A.一個圓 B.一條直線 C.一條線段 D.兩條射線 ②填空:如果直線與⊙O相切,那么它關(guān)于⊙O的反演圖形是 ,該圖形與圓O的位置關(guān)系是 .

15、 ⌒ 15.如圖,已知四邊形ABCD內(nèi)接于直徑為3的圓O,對角線AC是直徑,對角線AC和BD的交點為P,AB=BD,且PC=0.6,求四邊形ABCD的周長. 16.如圖,已知圓內(nèi)接△ABC中,AB>AC,D為BAC的中點,DE⊥AB于E,求證:BD2-AD2=AB×AC. 17.將三塊邊長均為l0cm的正方形煎餅不重疊地平放在圓碟內(nèi),則圓碟的直徑至

16、少是多少?(不考慮其他因素,精確到0.1cm) 18.如圖,直徑為13的⊙O′,經(jīng)過原點O,并且與軸、軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程的兩根. ⌒ (1)求線段OA、OB的長; (2)已知點C在劣弧OA上,連結(jié)BC交OA于D,當(dāng)OC2=CD×CB時,求C點坐標; (3)在⊙O,上是否存在點P,使S△POD=S△ABD?若存在,求出P點坐標;若不存在,請說明理由. 參考答案

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!