《2022年高考數(shù)學(xué)專題訓(xùn)練 函數(shù)的應(yīng)用與圖像》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)專題訓(xùn)練 函數(shù)的應(yīng)用與圖像(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)專題訓(xùn)練 函數(shù)的應(yīng)用與圖像
注意事項(xiàng):1.考察內(nèi)容:函數(shù)的應(yīng)用與圖像
2.題目難度:中等題型
3.題型方面:10道選擇,4道填空,4道解答。
4.參考答案:有詳細(xì)答案
5.資源類型:試題/課后練習(xí)/單元測(cè)試
一、選擇題
1.甲、乙兩工廠xx年元月份產(chǎn)值相同,甲廠的產(chǎn)值逐月增加,且每月增加的產(chǎn)值相等,乙廠的產(chǎn)值也逐月增加,且每月增長(zhǎng)的百分率相等,已知xx年元月份兩廠的產(chǎn)值相等,則xx年7月份產(chǎn)值高的工廠是( )
A.甲廠 B.乙廠
2、
C.產(chǎn)值一樣 D.無(wú)法確定
2.一批長(zhǎng)400cm的條形鋼材,須將其截成長(zhǎng)518mm與698mm的兩種毛坯,則鋼材的最大利用率為( )
A. B. C. D.
3.某公司在甲、乙兩地銷售一種品牌車,利潤(rùn)(單位:萬(wàn)元)分別為L(zhǎng)1=5.06x-0.15 x 2和L2=2 x,其中x為銷售量(單位:輛).若該公司在這兩地共銷售15輛車,則能獲得的最大利潤(rùn)為 ( )
A.45.606 B.45.6 C.45.56 D.45.51
4.在x克a%的鹽水中,加入y克b%的鹽水,濃度變成c
3、%(a,b>0,a≠b),則x與y的函數(shù)關(guān)系式是 ( )
A.y=x B.y=x C.y=x D.y=x
5.已知從甲地到乙地通話m分鐘的電話費(fèi)由元給出,其中,[m]表示不超過(guò)m的最大整數(shù),(如[3]=3,[3.2]=3),則從甲地到乙地通話時(shí)間為5.5分鐘的話費(fèi)為( )元
A.3.71 B.3.97 C.4.24 D.4.77
6.要得到的圖像,只需將函數(shù)的圖像 ( )
A.向左平移2個(gè)單位 B. 向右平移2個(gè)單位
C. 向左平移1個(gè)單位 D. 向右平移1個(gè)單位
7.方程表示的圖形為 ( )
A.兩條直線
4、 B.一條直線和一條射線 C.一個(gè)點(diǎn) D.兩條射線
8.已知函數(shù)滿足,且時(shí),,則與的圖象的交點(diǎn)個(gè)數(shù)為( )
A.1 B.5 C.7 D.9
9.下列圖形,其中能表示函數(shù)的是
10.一個(gè)高為H,水量為V的魚(yú)缸的軸截面如圖,其底部有一個(gè)洞,滿缸水從洞中流出,如果水深為h時(shí)水的體積為v,則函數(shù)的大致圖象是( )
A B C D
二、填空題
11.某公司一年購(gòu)買某種貨物400噸,每次都購(gòu)買
5、噸,運(yùn)費(fèi)為4萬(wàn)元/次,一年的總存儲(chǔ)費(fèi)用為萬(wàn)元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則 噸.
12.運(yùn)貨卡車以每小時(shí)千米的速度勻速行駛130千米(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.這次行車總費(fèi)用關(guān)于的表達(dá)式 ;當(dāng)= 時(shí),這次行車的總費(fèi)用最低。
13.已知最小正周期為2的函數(shù)當(dāng)時(shí),,則函數(shù) 的圖象與的圖象的交點(diǎn)個(gè)數(shù)為 。
14.函數(shù)在閉區(qū)間上的圖象如圖所示,則 , .
三、解答題
15.通過(guò)研究學(xué)生
6、的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間,講座開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:
f(x)=
(1)開(kāi)講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開(kāi)講5分鐘與開(kāi)講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題
7、?
16.某市環(huán)保研究所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中綜合污染指數(shù)與時(shí)間x(小時(shí))的關(guān)系為=||+2a,,其中a為與氣象有關(guān)的參數(shù),且.若將每天中的最大值作為當(dāng)天的綜合污染指數(shù),并記作M(a) .
(Ⅰ)令t=,,求t的取值范圍;
(Ⅱ) 求函數(shù)M(a)的解析式;
(Ⅲ) 為加強(qiáng)對(duì)環(huán)境污染的整治,市政府規(guī)定每天的綜合污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合污染指數(shù)是否超標(biāo)?
17.
2
2
5
O
A
C
B
X
Y
如圖,直角梯形位于直線
右側(cè)的圖形的面積為.
(1)
8、試求函數(shù)的解析式;
(2)畫出函數(shù)的圖像.
18.已知函數(shù)是定義在上的偶函數(shù),
且當(dāng)時(shí),.
(1)現(xiàn)已畫出函數(shù)在軸左側(cè)的圖像,如圖
所示,請(qǐng)補(bǔ)全函數(shù)的圖像,并根據(jù)圖像寫出函
數(shù)的增區(qū)間;
(2)寫出函數(shù)的值域;
(3)寫出函數(shù)的解析式。
答案
一、選擇題
1.A
2.B
3.B
4.B
5.A
6.C
7.B
函數(shù)恒過(guò)點(diǎn)(1,0),且當(dāng)x=10時(shí),lgx=1,所以兩函數(shù)圖象共有9個(gè)交點(diǎn). 故應(yīng)選D
9.B
10.D
二、填
9、空題
11.20
12.解析:(1)設(shè)行車所用時(shí)間為 ,所以,這次行車總費(fèi)用y關(guān)于x的表達(dá)式是
(或:)
(2) 僅當(dāng)時(shí),上述不等式中等號(hào)成立
13.5
14.0,-1
三、解答題
15.解析:(1)當(dāng)0<x≤10時(shí),f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9
故f(x)在0<x≤10時(shí)遞增,最大值為f(10)=-0.1(10-13)2+59.9=59
當(dāng)10<x≤16時(shí),f(x)≡59
當(dāng)x>16時(shí),f(x)為減函數(shù),且f(x)<59
因此,開(kāi)講10分鐘后,學(xué)生達(dá)到最強(qiáng)接受能力(為59),能維持6分鐘時(shí)間.
(2)f(5)=-
10、0.1(5-13)2+59.9=53.5
f(20)=-3×20+107=47<53.5
故開(kāi)講5分鐘時(shí)學(xué)生的接受能力比開(kāi)講20分鐘時(shí)要強(qiáng)一些.
(3)當(dāng)0<x≤10時(shí),令f(x)=55,解得x=6或20(舍)
當(dāng)x>16時(shí),令f(x)=55,解得x=17
因此學(xué)生達(dá)到(含超過(guò))55的接受能力的時(shí)間為17-6=11<13(分)
老師來(lái)不及在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題.
16.解析:(Ⅰ):因?yàn)椋?,所以,故?
(Ⅱ)因?yàn)?所以,
..
當(dāng)時(shí),;
當(dāng),.
而,
當(dāng),,;
當(dāng),,.
所以,
(Ⅲ)由(Ⅱ)知的最大值為,它小于2,所以目前市中心的綜合污染指數(shù)沒(méi)有超標(biāo)
17.解析:(1)設(shè)直線與梯形的交點(diǎn)為,
當(dāng)時(shí), ,
當(dāng)時(shí),,
所以.
(2)圖像(略).(建議畫出一段函數(shù)給一半分)
18.解析:(1)在區(qū)間,上單調(diào)遞增
l 寫成并集形式,扣2分
(2)函數(shù)的值域是
(3)設(shè),則
函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),